如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.

(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關(guān)系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.

(1)根據(jù)線面垂直的判定定理來加以證明,關(guān)鍵是對于DE⊥PC的證明的運(yùn)用。
(2)點Q是線段PA上任一點都有BD⊥DQ
(3)

解析試題分析:解:
(1)證明:由等腰三角形PBC,得BE⊥PC,又DE垂直平分PC,
∴DE⊥PC,且DE∩BE=E, ∴PC⊥平面BDE;   4分
(2)由(Ⅰ)PC⊥平面BDE,BD?平面BDE,∴PC⊥BD 
同理,∵PA⊥底面ABC,∴PA⊥BD,    6分
又PA∩PC=P,  ∴BD⊥面APC,DQ?面APC,  ∴BD⊥DQ.
所以點Q是線段PA上任一點都有BD⊥DQ    8分
(3)∵PA=AB=2,∴, ∵AB⊥BC,
∴S△ABC==2.AC=2
∴CD==,   9分
即S△DCB=S△ABC,又E是PC的中點
∴V B﹣CED=S△ABC•PA=.    12分
考點:幾何體的體積,以及線面垂直
點評:解決的關(guān)鍵是熟練的運(yùn)用空間中線面的垂直以及線線的垂直的判定定理和性質(zhì)定理來證明,并利用體積公式求解,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:三棱柱中,,,側(cè)棱底面,的中點,邊上的動點。

(1)若中點,求證:平面
(2)若,求四棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,,, ,分別是的中點.

(1)求證: 底面
(2)求證:平面平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P-ABCD的三視圖和直觀圖如下:

(1)求四棱錐P-ABCD的體積;
(2) 若E是側(cè)棱PC上的動點,是否不論點E在何位置,都有BD⊥AE?證明你的結(jié)論.
(3) 若F是側(cè)棱PA上的動點,證明:不論點F在何位置,都不可能有BF⊥平面PAD。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(Ⅰ)求此幾何體的體積;
(Ⅱ)求異面直線所成角的余弦值;
(Ⅲ)探究在上是否存在點Q,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,已知圓錐的軸截面ABC是邊長為的正三角形,O是底面圓心.

(1)求圓錐的表面積;
(2)經(jīng)過圓錐的高的中點作平行于圓錐底面的截面,求截得的圓臺的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知平面,且是垂足,

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直四棱柱中,底面是直角梯形,,

(1)求證:是二面角的平面角;
(2)在上是否存一點,使得與平面與平面都平行?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案