設函數(shù),,
其中|t|≤1,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)對于區(qū)間[-1,1]中的某個t,是否存在實數(shù)a,使得不等式g(t)≤成立?如果存在,求出這樣的a及其對應的t;如果不存在,請說明理由.
(1)g(t)=4t3-3t+3.
(2)對任意的實數(shù)a,=∈[-2,2]
當且僅當a=1時,=2,對應的t=-1或,
故當t=-1或時,這樣的a存在,且a=1,使得g(t)≥成立.
而當t∈(-1,1]且t≠時,這樣的a不存在.
(1)
.
由(sinx-t)2≥0,|t|≤1,故當sinx=t時,f(x)有最小值g(t),即
g(t)=4t3-3t+3.
(2)我們有.
列表如下:
t | (-1,-) | - | (-,) | (,1) | |
g'(t) | + | 0 | - | 0 | + |
G(t) | ↗ | 極大值g(-) | ↘ | 極小值g() | ↗ |
由此可見,g(t)在區(qū)間(-1,-)和(,1)單調增加,在區(qū)間(-,)單調減小,極小值為g()=2,
又g(-1)=-4-(-3)+3=2
故g(t)在[-1,1]上的最小值為2
注意到:對任意的實數(shù)a,=∈[-2,2]
當且僅當a=1時,=2,對應的t=-1或,
故當t=-1或時,這樣的a存在,且a=1,使得g(t)≥成立.
而當t∈(-1,1]且t≠時,這樣的a不存在.
科目:高中數(shù)學 來源: 題型:
x |
2 |
x |
2 |
4a |
1+a2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年重慶市高三上學期第五次測試理科數(shù)學試卷(解析版) 題型:解答題
、設函數(shù),,其中|t|≤1,將f(x)的最小值記為g(t).
(1)求g(t)的表達式;
(2)對于區(qū)間[-1,1]中的某個t,是否存在實數(shù)a,使得不等式g(t)≤成立?如果存在,求出這樣的a及其對應的t;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com