【題目】如圖,公園里有一湖泊,其邊界由兩條線段和以為直徑的半圓弧組成,其中為2百米,若在半圓弧,線段,線段上各建一個(gè)觀賞亭,再修兩條棧道,使. 記

(1)試用表示的長(zhǎng);

(2)試確定點(diǎn)的位置,使兩條棧道長(zhǎng)度之和最大.

【答案】(1);(2)重合.

【解析】分析:(1)解直角三角形BDC表示的長(zhǎng).(2)先利用正弦定理求出DF4cosθsin(θ), 再求出DEAF=44,再利用三角函數(shù)求DEDF的最大值.

詳解:(1)連結(jié)DC

在△ABC中,AC為2百米,ACBC,∠A,

所以∠CBAAB=4,BC

因?yàn)?/span>BC為直徑,所以BDC,

所以BDBC cosθcosθ

(2)在△BDF中,∠DBFθ,∠BFD=,BDcosθ,

所以

所以DF=4cosθsin(θ),

BF=4,所以DEAF=4-4,

所以DEDF=4-4+4 sin(θ)= sin2θθ+3

=2 sin(2θ)+3.

因?yàn)?/span>θ,所以≤2θ,

所以當(dāng)2θ,即θ時(shí),DEDF有最大值5,此時(shí)EC重合.

答:當(dāng)EC重合時(shí),兩條棧道長(zhǎng)度之和最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

購(gòu)買某種保險(xiǎn),每個(gè)投保人每年度向保險(xiǎn)公司交納保費(fèi)元,若投保人在購(gòu)買保險(xiǎn)的一年度內(nèi)出險(xiǎn),則可以獲得10 000元的賠償金.假定在一年度內(nèi)有10 000人購(gòu)買了這種保險(xiǎn),且各投保人是否出險(xiǎn)相互獨(dú)立.已知保險(xiǎn)公司在一年度內(nèi)至少支付賠償金10 000元的概率為。

)求一投保人在一年度內(nèi)出險(xiǎn)的概率;

)設(shè)保險(xiǎn)公司開辦該項(xiàng)險(xiǎn)種業(yè)務(wù)除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應(yīng)交納的最低保費(fèi)(單位:元)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.

方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.

(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;

(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)原點(diǎn)的直線被圓所截得的弦長(zhǎng)為,則的傾斜角為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線.

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若對(duì)任意時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且

(1)求的值;

(2)若為拋物線上異于的兩點(diǎn),且.記點(diǎn)到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)當(dāng)時(shí),若對(duì)任意都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓=1(a>b>0)上的點(diǎn)P到左,右兩焦點(diǎn)F1,F2的距離之和為2,離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)右焦點(diǎn)F2的直線l交橢圓于AB兩點(diǎn),若y軸上一點(diǎn)M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購(gòu)物已經(jīng)成為許多人消費(fèi)的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購(gòu)物情況,特委托一家網(wǎng)絡(luò)公示進(jìn)行了網(wǎng)絡(luò)問(wèn)卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到了下表所示數(shù)據(jù):

經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物

偶爾或從不進(jìn)行網(wǎng)絡(luò)購(gòu)物

合計(jì)

男性

50

50

100

女性

60

40

100

合計(jì)

110

90

200

(1)依據(jù)上述數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為該市市民進(jìn)行網(wǎng)絡(luò)購(gòu)物的情況與性別有關(guān)?

(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機(jī)選出人贈(zèng)送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物的概率;

(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機(jī)抽取人贈(zèng)送禮物,記經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物的人數(shù)為,求的期望和方差.

附:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案