設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…+(-1)n
xn
n
,其中n為正整數(shù),則集合M={xf1(f4(x))=0,x∈R}中元素個(gè)數(shù)是( 。
分析:先分別表示f1(x),f4(x),進(jìn)而可知 x=0是方程的根,利用導(dǎo)數(shù)法研究1-
x 
2
+
x2
3
-
x3
4
=0
的根,從而得解.
解答:解:由題意,f1(x)=1-x,f4(x)=1-x+
x2
2
-
x3
3
+
x4
4

∴f1(f4(x))=x-
x2
2
+
x3
3
-
x4
4
=x(1-
x 
2
+
x2
3
-
x3
4
)
=0
∴x=0是方程的根
又令y=1-
x 
2
+
x2
3
-
x3
4
,∴y/=-
1
2
+
2x 
3
-
3x2
4
<0

∴該函數(shù)為單調(diào)函數(shù),從而對(duì)應(yīng)的方程有唯一的根
∴集合M={xf1(f4(x))=0,x∈R}中元素個(gè)數(shù)是2個(gè)
故選C.
點(diǎn)評(píng):本題以函數(shù)為載體,考查集合知識(shí),考查方程的根,關(guān)鍵是表示出方程,進(jìn)而可以解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
(n∈N*)

(Ⅰ)研究函數(shù)f2(x)的單調(diào)性;
(Ⅱ)判斷fn(x)=0的實(shí)數(shù)解的個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=-1+
x
1!
+
x2
2!
+…+
xn
n!
,(x∈R,n∈N*)

(1)證明對(duì)每一個(gè)n∈N*,存在唯一的xn∈[
1
2
,1]
,滿足fn(xn)=0;
(2)由(1)中的xn構(gòu)成數(shù)列{xn},判斷數(shù)列{xn}的單調(diào)性并證明;
(3)對(duì)任意p∈N*,xn,xn+p滿足(1),試比較|xn-xn+p|與
1
n
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…+(-1)n
xn
n
,n∈N*

(Ⅰ)試確定f3(x)和f4(x)的單調(diào)區(qū)間及相應(yīng)區(qū)間上的單調(diào)性;
(Ⅱ)說(shuō)明方程f4(x)=0是否有解,并且對(duì)正整數(shù)n,給出關(guān)于x的方程fn(x)=0的解的一個(gè)一般結(jié)論,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知n∈N*,設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間;
(2)是否存在整數(shù)t,對(duì)于任意n∈N*,關(guān)于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實(shí)數(shù)解?若存在,求t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案