【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點。
(1)求橢圓C的標準方程。
(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足: 。試問:直線AB的斜率是否為定值?請說明理由。
【答案】(1) (2)
【解析】試題分析:對于(1),結(jié)合已知即可求出b2與a2,問題便可解答;
對于(2),當時,PA,PB的斜率之和為0.設直線PA的斜率為k,則PB的斜率為-k,接下來求出直線PA與PB的方程,然后將其與橢圓分別聯(lián)立,即可求出,然后利用斜率的計算公式不難求出k的值,問題便可解答.
試題解析:
(1)∵橢圓C的中心在原點,焦點在x軸上,∴設橢圓標準方程為(a>b>0),
∵橢圓離心率等于,它的一個頂點恰好是拋物線的焦點.
焦點為(0,2),
∴b=2…(1分)e==,a2﹣b2=c2,
∴解得a2=16,b2=12
∴橢圓C的標準方程.
(2)直線 x=﹣2與橢圓交點P(﹣2,3),Q(﹣2,﹣3)或P(﹣2,﹣3),Q(﹣2,3),∴|PQ|=6,設A (x1,y1 ),B( x2,y2),
當∠APQ=∠BPQ時直線PA,PB斜率之和為0.
設PA斜率為k,則PB斜率為﹣k.
當P(﹣2,3),Q(﹣2,﹣3)時,
PA的直線方程為y﹣3=k(x+2)
與橢圓聯(lián)立得(3+4k2)x2+8k(2k+3)x+4(2k+3)2﹣48=0
∴=;
同理
∴
, y1﹣y2=k(x1+2)+3﹣[﹣k(x2+2)+3]=
直線AB斜率為
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,g(x)=kx+1,若方程f(x)﹣g(x)=0有兩個不同實根,則實數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓O外有一點P,作圓O的切線PM,M為切點,過PM的中點N,作割線NAB,交圓于A、B兩點,連接PA并延長,交圓O于點C,連續(xù)PB交圓O于點D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解患肺心病是否與性別有關,在某醫(yī)院對入院者用簡單隨機抽樣方法抽取50人進行調(diào)查,結(jié)果如下列聯(lián)表:
(Ⅰ)是否有的把握認為入院者中患肺心病與性別有關?請說明理由;
(Ⅱ)已知在患肺心病的10位女性中,有3位患胃。F(xiàn)在從這10位女性中,隨機選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為,求的分布列和數(shù)學期望;
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一條公路上,每隔100km有個倉庫(如圖),共有5個倉庫.一號倉庫存有10t貨物,二號倉庫存20t,五號倉庫存40t,其余兩個倉庫是空的.現(xiàn)在想把所有的貨物放在一個倉庫里,如果每噸貨物運輸1km需要0.5元運輸費,那么要多少才行?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△OAB是等腰三角形,∠AOB=120°.以O為圓心, OA為半徑作圓.
(1)證明:直線AB與⊙O相切;
(2)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)的定義域,值域分別為A,B,且A∩B是單元集,下列命題中:
①若A∩B={a},則f(a)=a;
②若B不是單元集,則滿足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,則f(x)可能為偶函數(shù);
④若f(x)不是常數(shù)函數(shù),則f(x)不可能為周期函數(shù).
正確命題的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com