已知.
(Ⅰ)當(dāng)時,判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ)既不是奇函數(shù),也不是偶函數(shù);(Ⅱ);
(Ⅲ)當(dāng)時,的取值范圍是;當(dāng)時,的取值范圍是;當(dāng)時,的取值范圍是.

試題分析:(Ⅰ)對函數(shù)奇偶性的判斷,一定要結(jié)合函數(shù)特征先作大致判斷,然后再根據(jù)奇函數(shù)偶函數(shù)的定義作嚴(yán)格的證明.當(dāng)時,,從解析式可以看出它既不是奇函數(shù),也不是偶函數(shù).對既不是奇函數(shù),也不是偶函數(shù)的函數(shù),一般取兩個特殊值說明.
(Ⅱ)當(dāng)時,, 由,這是一個含有絕對值符號的不等式,對這種不等式,一般先分情況去絕對值符號.這又是一個含有指數(shù)式的不等式,對這種不等式,一般將指數(shù)式看作一個整體,先求出指數(shù)式的值,然后再利用指數(shù)式求出的值.
(Ⅲ)不等式恒成立的問題,一般有以下兩種考慮,一是分離參數(shù),二是直接求最值.在本題中,分離參數(shù)比較容易.分離參數(shù)時需要除以,故首先考慮的情況. 易得時,取任意實(shí)數(shù),不等式恒成立.
,此時原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031644504610.png" style="vertical-align:middle;" />;即,這時應(yīng)滿足:,所以接下來就求的最大值和的最小值.在求這個最大值和最小值時,因數(shù)還有一個參數(shù),所以又需要對進(jìn)行討論.
試題解析:(Ⅰ)當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)  
,∴ 
所以既不是奇函數(shù),也不是偶函數(shù)           3分
(Ⅱ)當(dāng)時,, 由  
  
解得 
所以           8分
(Ⅲ)當(dāng)時,取任意實(shí)數(shù),不等式恒成立,
故只需考慮,此時原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031644504610.png" style="vertical-align:middle;" />;即

又函數(shù)上單調(diào)遞增,所以;
對于函數(shù) 
①當(dāng)時,在單調(diào)遞減,,又,
所以,此時的取值范圍是  
②當(dāng),在上,,
當(dāng)時,,此時要使存在,
必須有    即,此時的取值范圍是
綜上,當(dāng)時,的取值范圍是;
當(dāng)時,的取值范圍是;
當(dāng)時,的取值范圍是           13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知偶函數(shù)y=f(x)定義域是[-3,3],當(dāng)時,f(x)=-1.

(1)求函數(shù)y=f(x)的解析式;
(2)畫出函數(shù)y=f(x)的圖象,并利用圖象寫出函數(shù)y=f(x)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)

(1)請在所給的平面直角坐標(biāo)系中畫出函數(shù)的圖像;
(2)根據(jù)函數(shù)的圖像回答下列問題:
①求函數(shù)的單調(diào)區(qū)間;
②求函數(shù)的值域;
③求關(guān)于的方程在區(qū)間上解的個數(shù).
(回答上述3個小題都只需直接寫出結(jié)果,不需給出演算步驟)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時,的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031438160537.png" style="vertical-align:middle;" />,且 若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),且(1)判斷函數(shù)的奇偶性;(2)判斷上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,滿足“對任意的時,均有”的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若不等式對于一切恒成立,則a的最小值是(  )
A.0B.-2 C.D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最大值為5,那么f(x)在區(qū)間[-7,-3]上是(   )
A.增函數(shù)且最小值是-5B.增函數(shù)且最大值是-5
C.減函數(shù)且最大值是-5D.減函數(shù)且最小值是-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于定義在上的函數(shù),有如下四個命題:
① 若,則函數(shù)是奇函數(shù);②若則函數(shù)不是偶函數(shù);
③ 若則函數(shù)上的增函數(shù);④若則函數(shù)不是上的減函數(shù).其中正確的命題有______________.(寫出你認(rèn)為正確的所有命題的序號).

查看答案和解析>>

同步練習(xí)冊答案