已知函數(shù)
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031438160537.png" style="vertical-align:middle;" />,且 若存在,求出、的值,若不存在,說明理由.
(1)(0,+);(2)

試題分析:(1)由題意可得對(duì)數(shù)的真數(shù)大于零即.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031438066529.png" style="vertical-align:middle;" />.所以可得.所以可得定義域的結(jié)論.
(2)由(1)可得在(1,+∞)上遞增.又由于f(x)的值域?yàn)椋?,+∞)所以f(1)=0.所以.又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031438409574.png" style="vertical-align:middle;" />.由此可解得.本題通過對(duì)數(shù)的定義域,滲透參數(shù)的不等式的解法是難點(diǎn).通過定義域與值域的關(guān)系建立兩個(gè)等式即可求出相應(yīng)的結(jié)論.
試題解析:(1)由.所以x>0.所以f(x)的定義域?yàn)椋?,+).
(2)令.又.所以g(x)在(0,+)上為增函數(shù).當(dāng)時(shí).g(x)>1.所以g(1)=1,即…①.又因?yàn)閒(2)=lg2.所以…②.解由①②得. .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知.
(Ⅰ)當(dāng)時(shí),判斷的奇偶性,并說明理由;
(Ⅱ)當(dāng)時(shí),若,求的值;
(Ⅲ)若,且對(duì)任何不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

冪函數(shù),其中,且在上是減函數(shù),又,則=(  )
A.0B.1 C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在定義域上既是奇函數(shù)又是增函數(shù)的為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),當(dāng)變化時(shí), 恒成立,則實(shí)數(shù)的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)在區(qū)間上是減函數(shù),則的最大值為    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)時(shí),,則在區(qū)間的值域?yàn)椋?nbsp; )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案