已知四棱錐中,平面,底面為菱形,=60,,是線段的中點.
(1)求證:;
(2)求平面與平面所成銳二面角的大;
(3)在線段上是否存在一點,使得∥平面PAE,并給出證明.
(1)略(2) (3)線段上存在一點,使得∥平面PAE,且F是PD的中點。
∵四邊形ABCD是的菱形,E為邊BC的中點,
∴AE⊥BC,AE⊥AD,又平面,∴PA⊥AE,PA⊥AD,以AE、AD、AP分別為x、y、z軸建立坐標(biāo)系,設(shè)AB=2,則
,-------------1分
(1)-------------2分
∴------------------3分
即PE⊥AD ---------------------4分
(2)設(shè)平面PCD的法向量為,則⊥,⊥,
∵
∴,
令,則,得平面PCD的一個法向量為,
又⊥平面PAE,則是平面PAE的一個法向量,設(shè)平面PAE與平面PCD所成角為,則
所以平面與平面所成銳二面角的大小為;------------------------8分
(3)在線段上存在一點,使得∥平面PAE,且F是PD的中點,
證明:取PA中點M,連結(jié)MF,易證四邊形CFMB是平行四邊形,所以CF∥EM,
又CF平面PAE,EM平面PAE,所以∥平面PAE.---------------------12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(12分)
已知四棱錐中,平面,底面是直角梯形,為的重心,為的中點,在上,且;
(1)求證:;
(2)當(dāng)二面角的正切值為多少時,
平面;
(3)在(2)的條件下,求直線與平面所成角
的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新疆烏魯木齊八中高二上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
如圖,已知四棱錐中,⊥平面, 是直角梯形,,90º,.
(1)求證:⊥;
(2)在線段上是否存在一點,使//平面,
若存在,指出點的位置并加以證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.如圖,已知四棱錐中,⊥平面,
是直角梯形,,90º,.
(1)求證:⊥;
(2)在線段上是否存在一點,使//平面,
若存在,指出點的位置并加以證明;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知四棱錐中,平面,底面是直角梯形,為的重心,為的中點,在上,且;
(1)求證:;
(2)當(dāng)二面角的正切值為多少時,
平面;
(3)在(2)的條件下,求直線與平面所成角
的正弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com