已知A,B兩點在拋物線C:x2=4y上,點M(0,4)滿足=λ.
(1)求證:;
(2)設(shè)拋物線C過A、B兩點的切線交于點N.
(ⅰ)求證:點N在一條定直線上;
(ⅱ)設(shè)4≤λ≤9,求直線MN在x軸上截距的取值范圍.
(1)證明:∵=0,∴.
(2)(ⅰ)點N(,-4),所以點N在定直線y=-4上. (ⅱ) [-,-]∪[,].
解析試題分析:設(shè)A(x1,y1),B(x2,y2),
lAB:y=kx+4與x2=4y聯(lián)立得x2-4kx-16=0,
Δ=(-4k)2-4(-16)=16k2+64>0,
x1+x2=4k,x1x2=-16, 2分
(1)證明:∵=x1x2+y1y2=x1x2+(kx1+4)(kx2+4)
=(1+k2)x1x2+4k(x1+x2)+16
=(1+k2)(-16)+4k(4k)+16=0
∴. 4分
(2)(ⅰ)證明:過點A的切線:
y=x1(x-x1)+y1=x1x-x12, 、
過點B的切線:y=x2x-x22, 、 6分
聯(lián)立①②得點N(,-4),所以點N在定直線y=-4上. 8分
(ⅱ)∵=λ,
∴(x1,y1-4)=λ(-x2,4-y2),
聯(lián)立x1=-λx2,x1+x2=4k,x1x2=-16,
可得k2==λ+-2,4≤λ≤9, 11分
∴≤k2≤.
直線MN:y=x+4在x軸上的截距為k.
∴直線MN在x軸上截距的取值范圍是[-,-]∪[,]. 14分
考點:本題考查了向量的運用及直線與拋物線的位置關(guān)系
點評:熟練掌握向量的坐標運算,靈活運用直線的特征是解決此類問題的關(guān)鍵,屬常考題型
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓的左、右焦點,O為坐標原點,點P在橢圓上,線段與y軸的交點M滿足
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以為直徑的圓,直線:與圓相切,并與橢圓交于不同的兩點,當,且滿足時,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點為,經(jīng)過點的動直線交拋物線于點,且.
(1)求拋物線的方程;
(2)若(為坐標原點),且點在拋物線上,求直線傾斜角;
(3)若點是拋物線的準線上的一點,直線的斜率分別為.求證:
當為定值時,也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程;
(3)過原點的直線交橢圓于點,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:的左、右焦點分別為,已知橢圓上的任意一點,滿足,過作垂直于橢圓長軸的弦長為3.
(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求滿足下列條件的橢圓方程長軸在軸上,長軸長等于12,離心率等于;橢圓經(jīng)過點;橢圓的一個焦點到長軸兩端點的距離分別為10和4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標平面上,為原點,為動點,,. 過點作軸于,過作軸于點,. 記點的軌跡為曲線,
點、,過點作直線交曲線于兩個不同的點、(點在與之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,一條經(jīng)過點且方向向量為的直線交橢圓于兩點,交軸于點,且.
(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知圓的圓心為原點,且與直線相切。
(1)求圓的方程;
(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com