【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求證:BF∥平面ADE;

(2)在線(xiàn)段CF上求一點(diǎn)G,使銳二面角B-EG-D的余弦值為.

【答案】(1)詳見(jiàn)解析;(2)點(diǎn)滿(mǎn)足.

【解析】

(1)先證明平面,平面可得平面平面,從而可得結(jié)果;(2)于點(diǎn),平面以平行于的直線(xiàn)為,所在直線(xiàn)為,所在直線(xiàn)為建立空間直角坐標(biāo)系,設(shè),利用向量垂直數(shù)量積為零列方程組求得平面的法向量,結(jié)合面的一個(gè)法向量為,利用空間向量夾角余弦公式列方程解得,從而可得結(jié)果.

(1)因?yàn)?/span>ABCD是矩形,所以BCAD,

又因?yàn)?/span>BC不包含于平面ADE

所以BC∥平面ADE,

因?yàn)?/span>DECFCF不包含于平面ADE,

所以CF∥平面ADE,

又因?yàn)?/span>BCCFC,所以平面BCF∥平面ADF,

BF平面BCF,所以BF∥平面ADE

(2)∵CD⊥AD,CD⊥DE

∴∠ADE為二面角A-CD-F的平面角

∴∠ADE=60°

∵CD⊥ADE

平面平面于點(diǎn),

平面,

,,

為原點(diǎn),平行于的直線(xiàn)為所在直線(xiàn)為,所在直線(xiàn)為,

建立如圖所示的空間直角坐標(biāo)系,

,

,

設(shè),則,

設(shè)平面的法向量為,

則由,,,

得平面的一個(gè)法向量為

又面的一個(gè)法向量為,

,

,

解得(舍去),

此時(shí),

即所求線(xiàn)段上的點(diǎn)滿(mǎn)足.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面為菱形,,,平面,分別是的中點(diǎn)。

(1)證明:;

(2)若上的動(dòng)點(diǎn),與平面所成最大角的正切值為,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為鈍角α的角形耕地,其中.在該塊土地中處有一小型建筑,經(jīng)測(cè)量,它到公路、的距離分別為,.現(xiàn)要過(guò)點(diǎn)修建一條直線(xiàn)公路,將三條公路圍成的區(qū)域建成一個(gè)工業(yè)園.設(shè),其中

(1)試建立間的等量關(guān)系;

(2)為盡量減少耕地占用,問(wèn)如何確定B點(diǎn)的位置,使得該工業(yè)園區(qū)的面積最小?并求最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等腰梯形中,,的中點(diǎn).將沿折起后如圖2,使二面角成直二面角,設(shè)的中點(diǎn),是棱的中

點(diǎn).

1)求證:;

2)求證:平面平面;

3)判斷能否垂直于平面,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將給定的一個(gè)數(shù)列,,,…按照一定的規(guī)則依順序用括號(hào)將它分組,則可以得到以組為單位的序列.如在上述數(shù)列中,我們將作為第一組,將作為第二組,將,作為第三組,…,依次類(lèi)推,第組有個(gè)元素(),即可得到以組為單位的序列:,,,…,我們通常稱(chēng)此數(shù)列為分群數(shù)列.其中第1個(gè)括號(hào)稱(chēng)為第1群,第2個(gè)括號(hào)稱(chēng)為第2群,第3個(gè)數(shù)列稱(chēng)為第3群,…,第個(gè)括號(hào)稱(chēng)為第群,從而數(shù)列稱(chēng)為這個(gè)分群數(shù)列的原數(shù)列.如果某一個(gè)元素在分群數(shù)列的第個(gè)群眾,且從第個(gè)括號(hào)的左端起是第個(gè),則稱(chēng)這個(gè)元素為第群眾的第個(gè)元素.已知數(shù)列1,1,3,1,3,9,1,3,9,27,…,將數(shù)列分群,其中,第1群為(1),第2群為(1,3),第3群為(1,3,),…,以此類(lèi)推.設(shè)該數(shù)列前項(xiàng)和,若使得成立的最小位于第個(gè)群,則( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)fx),若存在x0R,使fx0=x0,則稱(chēng)x0fx)的一個(gè)不動(dòng)點(diǎn),已知fx=x2+ax+4[1,3]恒有兩個(gè)不同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓,過(guò)點(diǎn)的動(dòng)直線(xiàn)與圓交于兩點(diǎn),線(xiàn)段的中點(diǎn)為為坐標(biāo)原點(diǎn).

1)求的軌跡方程;

2)當(dāng)時(shí),求的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某民營(yíng)企業(yè)生產(chǎn)AB兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤(rùn)y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙注:利潤(rùn)與投資單位為萬(wàn)元

分別將A,B兩種產(chǎn)品的利潤(rùn)y表示為投資x的函數(shù)關(guān)系式;

該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)問(wèn):怎樣分配這10萬(wàn)元資金,才能使企業(yè)獲得最大利潤(rùn),最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>I,區(qū)間,記.證明:

1)函數(shù)在區(qū)間D上單調(diào)遞增的充要條件是:,都有;

2)函數(shù)在區(qū)間D上單調(diào)遞減的充要條件是:,都有.

查看答案和解析>>

同步練習(xí)冊(cè)答案