【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.

(1)若學(xué)生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達式;

(2)為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時平均綜合費用為每平方米萬元

【解析】

由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;

設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時,每平方米建筑費用為萬元,

且樓房每升高一層,整層樓每平方米建筑費用提高萬元,

可得建筑第1層樓房每平方米建筑費用為:萬元.

建筑第1層樓房建筑費用為:萬元

樓房每升高一層,整層樓建筑費用提高:萬元

建筑第x層樓時,該樓房綜合費用為:

設(shè)該樓房每平方米的平均綜合費用為,

則:,

當(dāng)且僅當(dāng),即時,上式等號成立.

學(xué)校應(yīng)把樓層建成10層,此時平均綜合費用為每平方米萬元.

【點睛】

本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

【答案】(1)對稱軸為,最小正周期;(2)

【解析】

(1)利用正余弦的二倍角公式和輔助角公式將函數(shù)解析式進行化簡得到,由周期公式和對稱軸公式可得答案;(2)由x的范圍得到,由正弦函數(shù)的性質(zhì)即可得到值域.

(1)

,則

的對稱軸為,最小正周期

(2)當(dāng)時,

因為單調(diào)遞增,在單調(diào)遞減,

取最大值,在取最小值,

所以,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)

(1)求的值;

(2)求,求的值;

(3)畫出函數(shù)的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)線性回歸分析的六個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點;

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);

④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于1;

⑤殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高;

⑥甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

其中真命題的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xoy中,曲線C1上的點均在C2:(x﹣5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程
(2)設(shè)P(x0 , y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別于曲線C1相交于點A,B和C,D.證明:當(dāng)P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線 =1(a,b>0)的兩頂點為A1 , A2 , 虛軸兩端點為B1 , B2 , 兩焦點為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 為正實數(shù)

1)當(dāng)時,求曲線在點處的切線方程;

2求證: ;

3)若函數(shù)且只有零點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在送醫(yī)下鄉(xiāng)活動中,某醫(yī)院安排3名男醫(yī)生和2名女醫(yī)生到三所鄉(xiāng)醫(yī)院工作,每所醫(yī)院至少安排一名醫(yī)生,且女醫(yī)生不安排在同一鄉(xiāng)醫(yī)院工作,則不同的分 配方法總數(shù)為( )
A.78
B.114
C.108
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1,F2分別為橢圓C

(1)若橢圓C上的點

(2)設(shè)點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程;

(3)已知橢圓具有性質(zhì):若M,N是橢圓C上關(guān)于原點對稱的兩個點,點P是橢圓上任意一點,當(dāng)直線PM,PN的斜率都存在,并記為kPM,kPN時,那么kPM與kPN之積是與點P位置無關(guān)的定值,試寫出雙曲

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4及圓內(nèi)一點P(2,5).
(1)求過P點的弦中,弦長最短的弦所在的直線方程;
(2)求過點M(5,0)與圓C相切的直線方程.

查看答案和解析>>

同步練習(xí)冊答案