(本小題滿分12分)
設(shè)為奇函數(shù),a為常數(shù)。
(1) 求a的值;
(2) 證明在區(qū)間上為增函數(shù);
(3) 若對(duì)于區(qū)間上的每一個(gè)的值,不等式恒成立,求實(shí)數(shù)m的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(I)a=2時(shí),求和的公共點(diǎn)個(gè)數(shù);
(II)a為何值時(shí),的公共點(diǎn)個(gè)數(shù)恰為兩個(gè)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知f(x)、g(x)分別為奇函數(shù)、偶函數(shù),且f(x)+g(x)=2x+2x,求f(x)、g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,若能表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和.
(Ⅰ)求和的解析式;
(Ⅱ)若和在區(qū)間上都是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,且.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)解不等式;
(Ⅲ)若在上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
隨著機(jī)構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù),每人每年可創(chuàng)利10萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,若裁員x人,則留崗職員每人每年多創(chuàng)利0.1x萬(wàn)元,但公司需付下崗職員每人每年4萬(wàn)元的生活費(fèi),并且該公司正常運(yùn)轉(zhuǎn)情況下,所裁人數(shù)不超過50人,為獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)二次函數(shù)滿足下列條件:
①當(dāng)時(shí),其最小值為0,且成立;
②當(dāng)時(shí),恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的實(shí)數(shù),使得存在,只要當(dāng)時(shí),就有成立
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com