已知函數(shù)f(x)對任意實數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負數(shù),且f (x)在區(qū)間[0,2]上有表達式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)寫出f(x)在[-3,3]上的表達式,并討論函數(shù)f(x)在[-3,3]上的單調性;
(3)求出f(x)在[-3,3]上的最小值與最大值,并求出相應的自變量的取值.
(1)f(-1)=-k f(2.5)=-
(2) f(x)= f(x)在[-3,-1]與[1,3]上為增函數(shù),在[-1,1]上為減函數(shù)
(3) ①k<-1時,f(x)在x=-3處取得最小值f(-3)=-k2,
在x=-1處取得最大值f(-1)=-k.
②k=-1時,f(x)在x=-3與x=1處取得最小值f(-3)=f(1)=-1,
在x=-1與x=3處取得最大值f(-1)=f(3)=1.
③-1<k<0時,f(x)在x=1處取得最小值f(1)=-1,在x=3處取得最大值f(3)=-.
【解析】
解:(1)f(-1)=kf(1)=-k,
∵f(0.5)=kf(2.5),
∴f(2.5)=f(0.5)=(0.5-2)×0.5=-.
(2)∵對任意實數(shù)x,f(x)=kf(x+2),
∴f(x-2)=kf(x),
∴f(x)=f(x-2),
當-2≤x<0時,0≤x+2<2,f(x)=kf(x+2)=kx(x+2);
當-3≤x<-2時,-1≤x+2<0,
f(x)=kf(x+2)=k2(x+2)(x+4);
當2<x≤3時,0<x-2≤1,
f(x)=f(x-2)=(x-2)(x-4).
故f(x)=
∵k<0,
∴f(x)在[-3,-1]與[1,3]上為增函數(shù),在[-1,1]上為減函數(shù).
(3)由函數(shù)f(x)在[-3,3]上的單調性可知,
f(x)在x=-3或x=1處取得最小值f(-3)=-k2或f(1)=-1,
而在x=-1或x=3處取得最大值f(-1)=-k或f(3)=-.
故有①k<-1時,f(x)在x=-3處取得最小值f(-3)=-k2,
在x=-1處取得最大值f(-1)=-k.
②k=-1時,f(x)在x=-3與x=1處取得最小值f(-3)=f(1)=-1,
在x=-1與x=3處取得最大值f(-1)=f(3)=1.
③-1<k<0時,f(x)在x=1處取得最小值f(1)=-1,在x=3處取得最大值f(3)=-.
科目:高中數(shù)學 來源: 題型:
ab |
查看答案和解析>>
科目:高中數(shù)學 來源:北京市海淀區(qū)2012屆高三下學期期中練習數(shù)學文科試題 題型:022
已知函數(shù)f(x)=則f(f(x))=________;
下面三個命題中,所有真命題的序號是________.
①函數(shù)f(x)是偶函數(shù);
②任取一個不為零的有理數(shù)T,f(x+T)=f(x)對x∈R恒成立;
③存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年普通高等學校招生全國統(tǒng)一考試、理科數(shù)學(上海卷) 題型:044
若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠離m.
(1)若x2-1比1遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠離2ab;
(3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年全國普通高等學校招生統(tǒng)一考試、文科數(shù)學(上海卷) 題型:044
若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab;
(3)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調性(結論不要求證明).
查看答案和解析>>
科目:高中數(shù)學 來源:上海高考真題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com