(本題13分)
已知f(x)=lnx+x2-bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)當(dāng)b=-1時(shí),設(shè)g(x)=f(x)-2x2,求證函數(shù)g(x)只有一個(gè)零點(diǎn).
解:(1)∵f(x)在(0,+∞)上遞增,
∴f ′(x)=+2x-b≥0,對(duì)x∈(0,+∞)恒成立,
即b≤+2x對(duì)x∈(0,+∞)恒成立,
∴只需b≤min (x>0),
∵x>0,∴+2x≥2,當(dāng)且僅當(dāng)x=時(shí)取“=”,
∴b≤2,
∴b的取值范圍為(-∞,2].
(2)當(dāng)b=-1時(shí),g(x)=f(x)-2x2=lnx-x2+x,其定義域是(0,+∞),
∴g′(x)=-2x+1
=-=-,
令g′(x)=0,即-=0,
∵x>0,∴x=1,
當(dāng)0<x<1時(shí),g′(x)>0;當(dāng)x>1時(shí),g′(x)<0,
∴函數(shù)g(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減,
∴當(dāng)x≠1時(shí),g(x)<g(1),即g(x)<0,當(dāng)x=1時(shí),g(x)=0.
∴函數(shù)g(x)只有一個(gè)零點(diǎn).
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)若,函數(shù)在上既能取到極大值,又能取到極小值,求的取值范圍;
(2)當(dāng)時(shí),對(duì)任意的恒成立,求的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù).
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)于都有成立,試求的取值范圍;
(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)
線(xiàn)的斜率是-5。
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線(xiàn)y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=lnx-ax2+(2-a)x
(1)討論f(x)的單調(diào)性;(2)設(shè)a>0,證明:當(dāng)0<x<時(shí),f>f;
(3)若函數(shù)y=f(x)的圖象與x軸交于A(yíng),B兩點(diǎn),線(xiàn)段AB中點(diǎn)的橫坐標(biāo)為x0,證明f′(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分16分)
已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)若在區(qū)間上恒成立,求的取值范圍;
(3)當(dāng)時(shí),求證:在區(qū)間上,滿(mǎn)足恒成立的函數(shù)有無(wú)窮多個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù).
(1)若,求x的取值范圍;
(2)若對(duì)于∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知函數(shù)的定義域?yàn)閇,],值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/c/crua.gif" style="vertical-align:middle;" />,
],并且在,上為減函數(shù).
(1)求的取值范圍;
(2)求證:;
(3)若函數(shù),,的最大值為M,
求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn) 處的切線(xiàn)的斜率是5.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間上的最大值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com