【題目】如圖是函數(shù)(,,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將()的圖象上的所有的點( )
A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
B. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標不變
C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變
D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>2倍,縱坐標不變
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的漸近線方程為,一個焦點為.
(1)求雙曲線的方程;
(2)過雙曲線上的任意一點,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形,證明四邊形的面積是一個定值;
(3)設(shè)直線與在第一象限內(nèi)與漸近線所圍成的三角形繞著軸旋轉(zhuǎn)一周所得幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為,圓與軸相切于點,與軸正半軸相交于、兩點,且,如圖1.
(1)求圓的方程;
(2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分;
(3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線與軸交于點,直線與軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為中點,側(cè)棱,底面為直角梯形,其中,,平面,、分別是線段、上的動點,且.
(1)求證:平面;
(2)當三棱錐的體積取最大值時,求到平面的距離;
(3)在(2)的條件下求與平面所成角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示多面體,其底面為矩形且,四邊形為平行四邊形,點在底面內(nèi)的投影恰好是的中點.
(1)已知為線段的中點,證明:平面;
(2)若二面角大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
純利潤 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.假設(shè)選取的是2月至6月的數(shù)據(jù).
(1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?
參考公式:,,,;參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點.
(1)求證:平面PAD;
(2)若,求直線EF與平面PAB所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com