設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=7,且a1+3,3a2a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=ln a3n+1,n=1,2,…,求數(shù)列{bn}的前n項和Tn.
(1)an=2n-1(2)ln 2
(1)依題意,得 
解得a2=2.
設(shè)等比數(shù)列{an}的公比為q,由a2=2,可得a1a3=2q.
S3=7,可知+2+2q=7,即2q2-5q+2=0,
解得q=2或.
由題意,得q>1,∴q=2,∴a1=1.
故數(shù)列{an}的通項是an=2n-1.
(2)由于bn=ln a3n+1,n=1,2,…,
由(1)得a3n+1=23n
bn=ln 23n=3n ln 2,
bn+1bn=3ln 2,
∴數(shù)列{bn}是等差數(shù)列.
Tnb1b2+…+bnln 2.
Tnln 2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{bn}滿足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在實數(shù)p,q,對任意n∈N*都有pT1T2T3+…+Tnq成立,試求qp的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2 013(a4-1)=1,(a2 010-1)3+2 013(a2 010-1)=-1,則下列結(jié)論中正確的是(  )
A.S2 013=2 013,a2 010<a4
B.S2 013=2 013,a2 010>a4
C.S2 013=2 012,a2 010≤a4
D.S2 013=2 012,a2 010≥a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)對應(yīng)關(guān)系如下表所示,數(shù)列{an}滿足:a1=3,an+1=f(an),則a2 012=________.
x
1
2
3
f(x)
3
2
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6a8=-10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且滿足Snn2,數(shù)列{bn}滿足bn,Tn為數(shù)列{bn}的前n項和.
(1)求數(shù)列{an}的通項公式anTn
(2)若對任意的n∈N*,不等式λTn<n+(-1)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,a8a11+6,則數(shù)列{an}前9項的和S9等于(  ).
A.24B.48C.72D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知單調(diào)遞增的等比數(shù)列{an}滿足:
a2a3a4=28,且a3+2是a2a4的等差中項.
(1)求數(shù)列{an}的通項公式an
(2)令bnanlogan,Snb1b2+…+bn,求使Snn·2n+1>50成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的各項都是正數(shù),且對任意n∈N*,都有+…+,記Sn為數(shù)列{an}的前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有bn+1>bn.

查看答案和解析>>

同步練習(xí)冊答案