如圖,正三棱柱的九條棱都相等,三個側(cè)面都是正方體,M、N分別是BC和A1C1的中點,求MN與CC1所成角的余弦值.
設(shè)正三棱柱的棱長為a,取AC中點O,連接MO,NO,則NO垂直平面ABC

∴∠MNO為MN與CC1所成的角
在Rt△MNO中,∠NOM=90°,NO=A1A=2a
∵M(jìn),O分別為BC,AC的中點,∴MO=
1
2
AB=a
∴MN=
NO2+MO2
=
5
a
∴cos∠MNO=
NO
MN
=
2
5
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求證:C1O面AB1D1
(2)求異面直線AD1與C1O所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長方體ABCD-A1B1C1D1中,BB1=BC,P為C1D1上一點,則異面直線PB與B1C所成角的大。ā 。
A.是45°B.是60°
C.是90°D.隨P點的移動而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中直線A1D與平面AB1C1D所成角為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知斜三棱柱(側(cè)棱不垂直于底面)ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,BC=2,AC=2
3
,AB=2
2
,AA1=A1C=
6

(Ⅰ)設(shè)AC的中點為D,證明A1D⊥底面ABC;
(Ⅱ)求異面直線A1C與AB成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方體ABCD-A1B1C1D1中,M,N分別是棱B1C1,AD的中點,則直線MN與底面ABCD所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長為2,M,N分別為AA1、BB1的中點.
求:(1)CM與D1N所成角的余弦值.
(2)D1N與平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知二面角α-l-β等于90°,A、B是棱l上兩點,AC、BD分別在半平面α、β內(nèi),AC⊥l,BD⊥l,已知AB=5,AC=3,BD=4,則CD與平面α所成角的正弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
3
,AB⊥AC,
(1)證明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案