【題目】已知數(shù)(其中).
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)求函數(shù)的反函數(shù)
(3)若兩個函數(shù)與在區(qū)間上恒滿足,則函數(shù)與在閉區(qū)間上是分離的.試判斷的反函數(shù)與在閉區(qū)間上是否分離?若分離,求出實數(shù)的取值范圍;若不分離,請說明理由.
【答案】(1)奇函數(shù),理由見解析;(2);(3).
【解析】
(1)求出函數(shù)的定義域,然后利用定義可判斷出函數(shù)的奇偶性;
(2)由(1)得,將兩個等式化為指數(shù)式,可解出,即可得出函數(shù)的解析式,并求出函數(shù)的值域,作為函數(shù)的定義域;
(3)根據(jù)函數(shù)與在閉區(qū)間上分離得出不等式在區(qū)間上恒成立,令,得出,利用函數(shù)在區(qū)間上的最小值可解出實數(shù)的取值范圍.
(1)對任意的,,則對任意的恒成立,
則函數(shù)的定義域為,關于原點對稱,
又,
,,
因此,函數(shù)為奇函數(shù);
(2)設,當時,,此時,
當時,,則,
所以,函數(shù)的值域為.
由(1)可得,
將上述兩個等式化為指數(shù)式得,解得.
因此,;
(3)假設函數(shù)與在閉區(qū)間上分離,則,
即,整理得,即在區(qū)間上恒成立,
令,則,設,
,則函數(shù)在區(qū)間上單調(diào)遞增,
所以,函數(shù)在區(qū)間上的最小值為,由題意得,
即,,解得,
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求的直角坐標方程;
(2)若與有且僅有三個公共點,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于曲線C所在平面上的定點,若存在以點為頂點的角,使得對于曲線C上的任意兩個不同的點A,B恒成立,則稱角為曲線C相對于點的“界角”,并稱其中最小的“界角”為曲線C相對于點的“確界角”.曲線相對于坐標原點的“確界角”的大小是 _________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.
(1)寫出的極坐標方程和的直角坐標方程;
(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當C點為半圓的中點時,求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,側面SCD為鈍角三角形且垂直于底面ABCD,,點M是SA的中點,,,.
(1)求證:平面SCD;
(2)若直線SD與底面ABCD所成的角為,求平面MBD與平面SBC所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com