【題目】已知數(shù)(其中.

1)判斷函數(shù)的奇偶性,并說明理由;

2)求函數(shù)的反函數(shù)

3)若兩個函數(shù)在區(qū)間上恒滿足,則函數(shù)在閉區(qū)間上是分離的.試判斷的反函數(shù)在閉區(qū)間上是否分離?若分離,求出實數(shù)的取值范圍;若不分離,請說明理由.

【答案】1)奇函數(shù),理由見解析;(2;(3.

【解析】

1)求出函數(shù)的定義域,然后利用定義可判斷出函數(shù)的奇偶性;

2)由(1)得,將兩個等式化為指數(shù)式,可解出,即可得出函數(shù)的解析式,并求出函數(shù)的值域,作為函數(shù)的定義域;

3)根據(jù)函數(shù)在閉區(qū)間上分離得出不等式在區(qū)間上恒成立,令,得出,利用函數(shù)在區(qū)間上的最小值可解出實數(shù)的取值范圍.

1)對任意的,則對任意的恒成立,

則函數(shù)的定義域為,關于原點對稱,

,

因此,函數(shù)為奇函數(shù);

2)設,當時,,此時,

時,,則,

所以,函數(shù)的值域為.

由(1)可得,

將上述兩個等式化為指數(shù)式得,解得.

因此,

3)假設函數(shù)在閉區(qū)間上分離,則,

,整理得,即在區(qū)間上恒成立,

,則,設

,則函數(shù)在區(qū)間上單調(diào)遞增,

所以,函數(shù)在區(qū)間上的最小值為,由題意得

,,解得,

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】己知正實數(shù)、滿足,則的最小值是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的方程為.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求的直角坐標方程;

2)若有且僅有三個公共點,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于曲線C所在平面上的定點,若存在以點為頂點的角,使得對于曲線C上的任意兩個不同的點A,B恒成立,則稱角為曲線C相對于點界角,并稱其中最小的界角為曲線C相對于點確界角.曲線相對于坐標原點確界角的大小是 _________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)6個零點,則實數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記不等式組 ,表示的平面區(qū)域為 .下面給出的四個命題: 其中真命題的是:

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程是為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.

(1)寫出的極坐標方程和的直角坐標方程;

(2)已知點、的極坐標分別為,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上除AB外的一個動點,DC垂直于半圓O所在的平面,DCEB,DCEB1,AB4.

1)證明:平面ADE⊥平面ACD

2)當C點為半圓的中點時,求二面角DAEB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐SABCD中,側面SCD為鈍角三角形且垂直于底面ABCD,,點MSA的中點,,.

1)求證:平面SCD;

2)若直線SD與底面ABCD所成的角為,求平面MBD與平面SBC所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案