是否存在銳角α和β,使得(1)α+2β=,(2)tantanβ=2-同時(shí)成立?若存在,則求出α、β的值;若不存在,請(qǐng)說(shuō)明理由.

解析:由(1)得+β=,

∴tan(+β)==.

將(2)代入上式得tan+tanβ=3-.

因此,tan與tanβ是一元二次方程x2-(3-)x+(2-)=0的兩根,

解之,得x1=1,x2=2-.

若tan=1,

∵α為銳角,∴0<.

∴這樣的α不存在.

∴只能是tan=2-,tanβ=1.

由于α、β均為銳角,

∴α=,β=.

故存在α=,β=使(1)(2)式同時(shí)成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在銳角α,β,使得下列兩式:①α+2β=
3
;②tan
α
2
?tanβ=2-
3
同時(shí)成立?若存在,求出α和β;若不存在,說(shuō)明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)是否存在銳角α與β,使得(1)α+2β=
3
,(2)tan
α
2
•tanβ=2-
3
同時(shí)成立.
若存在,求出α和β的值;若不存在,說(shuō)明理由.
(2)已知tanα,tanβ是方程x2-3x-3=0的兩根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

是否存在銳角,使得(1);(2)同時(shí)成立,若存在,求出、的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年陜西省高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

是否存在銳角,使得(1)同時(shí)成立?若存在,求出的值;若不存在,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案