【題目】已知數(shù)列的前項和為,且滿足,求數(shù)列的通項公式.勤于思考的小紅設(shè)計了下面兩種解題思路,請你選擇其中一種并將其補充完整.
思路1:先設(shè)的值為1,根據(jù)已知條件,計算出_________, __________, _________.
猜想: _______.
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng)時,________________,猜想成立
②假設(shè)(N*)時,猜想成立,即_______.
那么,當(dāng)時,由已知,得_________.
又,兩式相減并化簡,得_____________(用含的代數(shù)式表示).
所以,當(dāng)時,猜想也成立.
根據(jù)①和②,可知猜想對任何N*都成立.
思路2:先設(shè)的值為1,根據(jù)已知條件,計算出_____________.
由已知,寫出與的關(guān)系式: _____________________,
兩式相減,得與的遞推關(guān)系式: ____________________.
整理: ____________.
發(fā)現(xiàn):數(shù)列是首項為________,公比為_______的等比數(shù)列.
得出:數(shù)列的通項公式____,進(jìn)而得到____________.
【答案】 2 2
【解析】試題分析:思路1.由于,令,可求出的值,再令 ,可求出的值,再令,可求出的值,利用不完全歸納法,歸納猜想出,再用數(shù)學(xué)歸納法加以證明, 這是一種“歸納—猜想—證明”思維方式,從特殊到一般的歸納推理方式;思路2.采用構(gòu)造法直接求出數(shù)列得通項公式.
試題解析:思路1.由于,令, ;令 , , ,令 , ,則
,由此猜想 ;下面用數(shù)學(xué)歸納法證明,證明過程如下:
①當(dāng)時, ,得 ,符合 ,猜想成立.
②假設(shè)(N*)時,猜想成立,即,
那么,當(dāng)時,由已知,得 ,
又,兩式相減并化簡,得 , (用含的代數(shù)式表示).所以,當(dāng)時,猜想也成立.
根據(jù)①和②,可知猜想對任何N*都成立.
思路2. 先設(shè)的值為1,根據(jù)已知條件,計算出,
由已知,寫出與的關(guān)系式: ,
兩式相減,得與的遞推關(guān)系式: ,
整理: ,
發(fā)現(xiàn):數(shù)列是首項為2,公比為2的等比數(shù)列.
得出:數(shù)列的通項公式 ,進(jìn)而得到 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)從中隨機(jī)抽取100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?/span>.
(Ⅰ)若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求的值;
(Ⅱ)已知,求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD⊥平面CDE,H是BE的中點,G是AE,DF的交點.
(1)求證:GH∥平面CDE;
(2)求證:面ADEF⊥面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014陜西理8】原命題為“若互為共軛復(fù)數(shù),則”,關(guān)于逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( )
A. 真,假,真 B. 假,假,真
C. 真,真,假 D. 假,假,假
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,求|a+b|和a+b與c的夾角;
(2)設(shè)O為△ABC的外心,已知AB=3,AC=4,非零實數(shù)x,y滿足=x+y,且x+2y=1,求cos ∠BAC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3-bx2+(2-b)x+1在x=x1處取得極大值,在x=x2處取得極小值,且0<x1<1<x2<2.
(1)證明:a>0;
(2)若z=a+2b,求z的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com