【題目】已知函數(shù).
(Ⅰ)若在處取極值,求在點處的切線方程;
(Ⅱ)當時,若有唯一的零點,求證:
【答案】(Ⅰ);(Ⅱ)見解析.
【解析】試題分析:
本題考查導數(shù)的幾何意義及導數(shù)在研究函數(shù)單調(diào)性、極值中的應用。(Ⅰ)根據(jù)函數(shù)在處取極值可得,然后根據(jù)導數(shù)的幾何意義求得切線方程即可。(Ⅱ)由(Ⅰ)知 ,令,可得在上單調(diào)遞減,在上單調(diào)遞增。結(jié)合函數(shù)的單調(diào)性和函數(shù)值可得在上有唯一零點,設(shè)為,證明即可得結(jié)論。
試題解析:
(Ⅰ)∵,
,
∵在處取極值,
∴,解得.
,
,
又.
∴在點處的切線方程為,
即
(Ⅱ)由(Ⅰ)知 ,
令,
則
由,可得
在上單調(diào)遞減,在上單調(diào)遞增。
又,故當時, ;
又,故在上有唯一零點,設(shè)為,
從而可知在上單調(diào)遞減,在上單調(diào)遞增,
因為有唯一零點,
故且
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的左、右焦點分別為、,設(shè)點,在中, ,周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過點的直線與橢圓相交于、兩點,若直線與的斜率之和為,求證:直線過定點,并求出該定點的坐標;
(3)記第(2)問所求的定點為,點為橢圓上的一個動點,試根據(jù)面積的不同取值范圍,討論存在的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4—4:坐標系與參數(shù)方程】
在直角坐標系中,直線的參數(shù)方程為 (為參數(shù), 為直線的傾斜角). 以平面直角坐標系的原點為極點,x軸的正半軸為極軸,取相同的長度單位,建立極坐標系. 圓C的極坐標方程為,設(shè)直線l與圓C交于兩點.
(Ⅰ)求角的取值范圍;
(Ⅱ)若點的坐標為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設(shè)橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義域為的奇函數(shù),且當時, ,設(shè) “”.
(1)若為真,求實數(shù)的取值范圍;
(2)設(shè)集合與集合的交集為,若為假, 為真,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)已知數(shù)列的前項和為, ,且是與的等差中項.
(Ⅰ)求的通項公式;
(Ⅱ)若數(shù)列的前項和為,且對,恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為。
(1)求曲線的普通方程和直線的直角坐標方程;
(2)過點且與直線平行的直線交于, 兩點,求點到, 的距離之積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點的直線與橢圓相交于兩點,點關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com