已知正項(xiàng)數(shù)列的前項(xiàng)和為,的等比中項(xiàng).
(1)求證:數(shù)列是等差數(shù)列;
(2)若,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若,求數(shù)列的前項(xiàng)和.
(1)詳見(jiàn)解析;(2);(3).

試題分析:(1)利用關(guān)系找出數(shù)列的遞推關(guān)系,可證明數(shù)列為等差數(shù)列;(2)由(1)可求出,由,可變形得出為等比數(shù)列,進(jìn)一步求出其通項(xiàng)公式;(3)根據(jù)數(shù)列的結(jié)構(gòu)特點(diǎn)(等差乘等比型)可用錯(cuò)位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過(guò)對(duì)所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯(cuò)位相減法,使用這個(gè)方法在計(jì)算上要有耐心和細(xì)心,注意各項(xiàng)的符號(hào),防止出錯(cuò).
試題解析:(1)          1分
當(dāng)時(shí),,∴                    2分
當(dāng)時(shí),
               3分
      4分
  ∴
∴數(shù)列是等差數(shù)列                          5分
(2)由,而,          7分
∴數(shù)列是以2為公比,4為首項(xiàng)的等比數(shù)列

                                       9分
(3)                               10分
  ①
兩邊同乘以 ②
①②得
 
              14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1公比為3 的等比數(shù)列,求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且,n=1,2,3
(1)求a1,a2;
(2)求Sn與Sn﹣1(n≥2)的關(guān)系式,并證明數(shù)列{}是等差數(shù)列;
(3)求S1•S2•S3 S2011•S2012的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè),將個(gè)數(shù)依次放入編號(hào)為1,2,…,個(gè)位置,得到排列,將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對(duì)應(yīng)的前和后個(gè)位置,得到排列,將此操作稱為變換,將分成兩段,每段個(gè)數(shù),并對(duì)每段作變換,得到;當(dāng)時(shí),將分成段,每段個(gè)數(shù),并對(duì)每段作變換,得到,例如,當(dāng)時(shí),,此時(shí),位于中的第4個(gè)位置.當(dāng)時(shí),位于中的第           個(gè)位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正項(xiàng)等比數(shù)列滿足,,,則數(shù)列的前10項(xiàng)和是(   ).
A.65 B.-65 C.25 D.-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列{}的前項(xiàng)和滿足,,則的最小值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

挪威數(shù)學(xué)家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關(guān)系發(fā)現(xiàn)了一個(gè)重要的恒等式——阿貝爾公式:


則其中:(I)L3=       ;(Ⅱ)Ln=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是等差數(shù)列的前項(xiàng)和,若,則(   )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,則此數(shù)列前13項(xiàng)的和為 (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案