【題目】已知橢圓,過原點作射線交橢圓于,平行四邊形的頂點,在橢圓上.

1)若射線的斜率為,求直線的斜率;

2)求證:四邊形的面積為定值.

【答案】1;(2)證明見解析.

【解析】

1)將射線方程與橢圓方程聯(lián)立可求得點坐標,由此得到中點坐標,利用點差法可求得直線斜率;

2)①當直線斜率不存在時,由對稱性可知四邊形為菱形,可求得其面積為;②當直線斜率存在時,設(shè)方程為,與橢圓方程聯(lián)立得到韋達定理的形式,結(jié)合平面向量線性運算可求得點坐標,代入橢圓方程得到的關(guān)系;利用弦長公式和點到直線距離公式表示出和原點到直線距離,由化簡可得面積為;綜合兩種情況可得結(jié)論.

1)設(shè)射線的方程為,與橢圓聯(lián)立得:,

時,中點,

四邊形為平行四邊形,中點,

設(shè),,

,兩式作差得:,

時,同理可求得;

綜上所述:直線的斜率為.

2)①當直線斜率不存在時,四邊形為菱形,平分

方程為,,

②當直線斜率存在時,設(shè)方程為:

得:,

,整理得:

設(shè),,則,

,

四邊形為平行四邊形,,

點坐標為,即,

在橢圓上,,整理得:,

又原點到直線距離,;

綜上所述:四邊形的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】足球起源于中國東周時期的齊國,當時把足球稱為“蹴鞠”.漢代蹴鞠是訓(xùn)練士兵的手段,制定了較為完備的體制.如專門設(shè)置了球場,規(guī)定為東西方向的長方形,兩端各設(shè)六個對稱的“鞠域”,也稱“鞠室”,各由一人把守.比賽分為兩隊,互有攻守,以踢進對方鞠室的次數(shù)決定勝負.1970年以前的世界杯用球多數(shù)由舉辦國自己設(shè)計,所以每一次球的外觀都不同,拼塊的數(shù)目如同擲骰子一樣沒準.1970年起,世界杯官方用球選擇了三十二面體形狀的足球,沿用至今.如圖Ⅰ,三十二面體足球的面由邊長相等的12塊正五邊形和20塊正六邊形拼接而成,形成一個近似的球體.現(xiàn)用邊長為的上述正五邊形和正六邊形所圍成的三十二面體的外接球作為足球,其大圓圓周展開圖可近似看成是由4個正六邊形與4個正五邊形以及2條正六邊形的邊所構(gòu)成的圖形的對稱軸截圖形所得的線段,如圖Ⅱ,則該足球的表面積約為( )

參考數(shù)據(jù):,,,

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點.

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)證明:(i;

ii)對任意恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面.底面是菱形,

(Ⅰ)求證:直線平面;

(Ⅱ)求直線與平面所成角的正切值;

(Ⅲ)已知在線段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)若存在最大值,且,求實數(shù)的取值范圍;

2)令,求證:對任意的,總存在最小值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會發(fā)展對環(huán)保的要求,越來越多的燃油汽車被電動汽車取代,為了了解某品牌的電動汽車的節(jié)能情況,對某一輛電動汽車“行車數(shù)據(jù)”的兩次記錄如下表:

記錄時間

累計里程

(單位:公里)

平均耗電量(單位:公里)

剩余續(xù)航里程

(單位:公里)

202011

5000

0.125

380

202012

5100

0.126

246

(注:累計里程指汽車從出廠開始累計行駛的路程,累計耗電量指汽車從出廠開始累計消耗的電量,

下面對該車在兩次記錄時間段內(nèi)行駛100公里的耗電量估計正確的是(

A.等于B.之間C.等于D.大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個小時抽取一件產(chǎn)品并對其某個質(zhì)量指標進行檢測,一共抽取了件產(chǎn)品,并得到如下統(tǒng)計表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護次數(shù)與指標有關(guān),具體見下表.

質(zhì)量指標

頻數(shù)

一年內(nèi)所需維護次數(shù)

(1)以每個區(qū)間的中點值作為每組指標的代表,用上述樣本數(shù)據(jù)估計該廠產(chǎn)品的質(zhì)量指標的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再從件產(chǎn)品中隨機抽取件產(chǎn)品,求這件產(chǎn)品的指標都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護費用為元/次,工廠現(xiàn)推出一項服務(wù):若消費者在購買該廠產(chǎn)品時每件多加元,該產(chǎn)品即可一年內(nèi)免費維護一次.將每件產(chǎn)品的購買支出和一年的維護支出之和稱為消費費用.假設(shè)這件產(chǎn)品每件都購買該服務(wù),或者每件都不購買該服務(wù),就這兩種情況分別計算每件產(chǎn)品的平均消費費用,并以此為決策依據(jù),判斷消費者在購買每件產(chǎn)品時是否值得購買這項維護服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

同步練習(xí)冊答案