如圖,三棱柱中,△ABC是正三角形,,平面平面.

(1)證明:;
(2)證明:求二面角的余弦值;
(3)設點是平面內的動點,求的最小值.
(1)證明過程詳見試題解析;(2);(3).

試題分析:(1)如圖,取的中點,連結、,

因為是正三角形,所以,又因為,所以;由,那么,所以;(2)由(1)結合條件可以得到就是二面角的平面角,在直角三角形中,有,又那么在直角三角形中,可根據(jù)勾股定理求出,那么;(3)以為坐標原點建立直角平面坐標系,要使得最小,就是要找出點關于平面的對稱點,求出即可.因此建立如解析中空間直角坐標系求.
試題解析:(1)證明:∵ ,△是正三角形,
,
,
又∵ ,∴△是正三角形,
中點,連結、,則
又∵,
,
又∵,
 
(2)證明:∵,由(1)知,
,


   ∴
,∴ ,


(3)解:延長使,連結、,
為原點建立如圖所示的空間直角坐標系,

則點的坐標為的坐標是,
就是的最小值,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D為AB的中點,AC=BC=BB1.

求證:(1)BC1⊥AB1.
(2)BC1∥平面CA1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=3,AD=6,BD是對角線,過點A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點D到點P的位置,且PB=.

(1)求證:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在三棱錐SABC中,底面是邊長為2的正三角形,點S在底面ABC上的射影O恰是AC的中點,側棱SB和底面成45°角.

(1)若D為側棱SB上一點,當為何值時,CD⊥AB;
(2)求二面角S-BC-A的余弦值大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在坐標平面xOy上,到點A(3,2,5),B(3,5,1)距離相等的點有(  )
A.1個B.2個C.不存在D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

有下列四個命題:
①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,則a·b=|a|·|b|.其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在正四棱錐SABCD中,O為頂點在底面上的射影,P為側棱SD的中點,且SOOD,則直線BC與平面PAC所成的角是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知向量,若,則______;

查看答案和解析>>

同步練習冊答案