(文)點(3,1)和點(-4,6)在直線3x-2y+a=0兩側(cè),則a的范圍是( )
A.a(chǎn)
B.-24<a<7
C.a(chǎn)=-7或a=24
D.-7<a<24
【答案】分析:由已知點(3,1)和點(-4,6)在直線3x-2y+a=0兩側(cè),我們將兩點坐標代入直線方程所得符號相反,則我們可以構(gòu)造一個關(guān)于a的不等式,解不等式即可得到答案.
解答:解:若(3,1)和點(-4,6)在直線3x-2y+a=0兩側(cè),
則[3×3-2×1+a]×[-3×4-2×6+a]<0
即(a+7)(a-24)<0
解得-7<a<24
故選D.
點評:本題考查的知識點是二元一次不等式與平面區(qū)域,根據(jù)A、B在直線兩側(cè),則點的坐標代入直線方程所得符號相反構(gòu)造不等式是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文)點(3,1)和點(-4,6)在直線3x-2y+a=0兩側(cè),則a的范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)已知函數(shù)f(x)=b•ax(其中a,b為常數(shù)且a>0,a≠1)的反函數(shù)的圖象經(jīng)過點A(4,1)和B(16,3).
(1)求a,b的值;
(2)若不等式(
1a
2x+b1-x-|m-1|≥0在x∈(-∞,1]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)(文)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設f(x)在(0,+∞)上取最小值時的自變量x取值為an
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},其中bn=an+12-an2,設Sn為數(shù)列{bn}的前n項和,求
lim
n→∞
Sn
C
2
n
;
(3)已知點列A1(1,a12)、A2(2,a22)、A3(3,a32)、…、An(n,an2)、…,設過任意兩點Ai,Aj(i,j為正整數(shù))的直線斜率為kij,當i=2008,j=2010時,求直線AiAj的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•楊浦區(qū)二模)(文)設F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設M、N是橢圓C上關(guān)于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

同步練習冊答案