【題目】某工廠有兩個(gè)車間生產(chǎn)同一種產(chǎn)品,第一車間有工人200人,第二車間有工人400人,為比較兩個(gè)車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,并對(duì)他們中每位工人生產(chǎn)完成一件產(chǎn)品的時(shí)間(單位:min)分別進(jìn)行統(tǒng)計(jì),得到下列統(tǒng)計(jì)圖表(按照[5565),[65,75),[75,85),[85,95]分組).

分組

頻數(shù)

[5565

2

[65,75

4

[75,85

10

[85,95]

4

合計(jì)

20

第一車間樣本頻數(shù)分布表

(Ⅰ)分別估計(jì)兩個(gè)車間工人中,生產(chǎn)一件產(chǎn)品時(shí)間小于75min的人數(shù);

(Ⅱ)分別估計(jì)兩車間工人生產(chǎn)時(shí)間的平均值,并推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)

(Ⅲ)從第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人中,隨機(jī)抽取3人,記抽取的生產(chǎn)時(shí)間小于65min的工人人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望.

【答案】(I)60,300;(II)第二車間工人生產(chǎn)效率更高.(III)見解析.

【解析】

(I)估計(jì)第一車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).估計(jì)第二車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人);(II)分別計(jì)算兩車間工人生產(chǎn)時(shí)間的平均值,再推測(cè)哪個(gè)車間工人的生產(chǎn)效率更高;(III)由題得X可取值為0,1,2,再分別求出概率,列出分布列,求出數(shù)學(xué)期望.

(I)估計(jì)第一車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).

估計(jì)第二車間生產(chǎn)時(shí)間小于75min的工人人數(shù)為(人).

(II)第一車間生產(chǎn)時(shí)間平均值約為(min).

第二車間生產(chǎn)時(shí)間平均值約為

(min).

∴第二車間工人生產(chǎn)效率更高.

(III)由題意得,第一車間被統(tǒng)計(jì)的生產(chǎn)時(shí)間小于75min的工人有6人,其中生產(chǎn)時(shí)間小于65min的有2人,從中抽取3人,隨機(jī)變量X服從超幾何分布,

X可取值為0,1,2,

,

,

.

X的分布列為:

X

0

1

2

P

所以數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)任意,都有.

討論的單調(diào)性;

當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)常數(shù))

1)當(dāng)時(shí),求函數(shù)上的單調(diào)區(qū)間;

2)當(dāng)時(shí),成立,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)說法,其中正確的是( )

A.命題“若,則”的否命題是“若,則

B.”是“雙曲線的離心率大于”的充要條件

C.命題“”的否定是“,

D.命題“在中,若,則是銳角三角形”的逆否命題是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知數(shù)列為等差數(shù)列,其前n項(xiàng)和為.若,試分別比較、的大小關(guān)系.

2)已知數(shù)列為等差數(shù)列,的前n項(xiàng)和為.證明:若存在正整數(shù)k,使,則.

3)在等比數(shù)列中,設(shè)的前n項(xiàng)乘積,類比(2)的結(jié)論,寫出一個(gè)與有關(guān)的類似的真命題,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過拋物線y2=6x的焦點(diǎn)F,且與拋物線相交于A,B兩點(diǎn).

(1)若直線l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線段AB的中點(diǎn)M到準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體ABCD的體積為1O為其中心,正四面體EFGH與正四面體ABCD關(guān)于點(diǎn)O對(duì)稱,則這兩個(gè)正四面體的公共部分的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,四邊形是矩形,的中點(diǎn),,平面平面

1)求證:平面

2)求銳二面角的平面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)于任意都有成立,試求的取值范圍;

(3)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案