【題目】如圖,三棱柱中,四邊形是矩形,是的中點,,,平面平面.
(1)求證:平面;
(2)求銳二面角的平面角的大。
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,橢圓的四個頂點構成的四邊形面積為.
(1)求橢圓的方程;
(2)若是橢圓上的一點,過且斜率等于的直線與橢圓交于另一點,點關于原點的對稱點為.求面積的最大值及取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠有兩個車間生產同一種產品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產完成一件產品的時間(單位:min)分別進行統(tǒng)計,得到下列統(tǒng)計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數(shù) |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數(shù)分布表
(Ⅰ)分別估計兩個車間工人中,生產一件產品時間小于75min的人數(shù);
(Ⅱ)分別估計兩車間工人生產時間的平均值,并推測哪個車間工人的生產效率更高?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(Ⅲ)從第一車間被統(tǒng)計的生產時間小于75min的工人中,隨機抽取3人,記抽取的生產時間小于65min的工人人數(shù)為隨機變量X,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的準線為,其焦點為F,點B是拋物線C上橫坐標為的一點,若點B到的距離等于.
(1)求拋物線C的方程,
(2)設A是拋物線C上異于頂點的一點,直線AO交直線于點M,拋物線C在點A處的切線m交直線于點N,求證:以點N為圓心,以為半徑的圓經過軸上的兩個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,試討論方程的解的個數(shù);
(2)若曲線和上分別存在點,,使得是以原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一片產量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質量(均在l至11kg)頻數(shù)分布表如下(單位: kg):
分組 |
|
|
|
|
|
頻數(shù) | 10 | 15 | 45 | 20 | 10 |
以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均值,將頻率視為概率.
(1)由種植經驗認為,種植園內的水果質量近似服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差.請估算該種植園內水果質量在內的百分比;
(2)現(xiàn)在從質量為 的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質量的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為元,求的分布列及數(shù)學期望.
附: ,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中.
討論函數(shù)與的圖象的交點個數(shù);
若函數(shù)與的圖象無交點,設直線與的數(shù)和的圖象分別交于點P,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知各項均為正數(shù)的等比數(shù)列的公比,且,是方程的兩根,記的前n項和為.
(1)若,,依次成等差數(shù)列,求m的值;
(2)設,數(shù)列的前n項和為,若,求n的最小值;
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com