【題目】如圖,在中, , 為中點(diǎn), 于(不同于點(diǎn)),延長交于,將沿折起,得到三棱錐,如圖所示.
(Ⅰ)若是的中點(diǎn),求證:直線平面.
(Ⅱ)求證: .
(Ⅲ)若平面平面,試判斷直線與直線能否垂直?請(qǐng)說明理由.
【答案】(1)見解析(2)見解析(3)不能垂直
【解析】試題分析:(1)由三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結(jié)論(2)由折疊知, ,由線面垂直判定定理得平面,即得結(jié)論(3)假設(shè)直線與直線垂直,則可得直線與直線垂直,與題設(shè)E與D不同矛盾,假設(shè)不成立.
試題解析:(Ⅰ)證明:∵、分別為、中點(diǎn),
∴,
又∵平面,
平面,
∴平面.
(Ⅱ)∵,
,
點(diǎn),
、平面,
∴平面,
∴.
(Ⅲ)直線與直線不能垂直,
∵平面平面,
平面平面,
,
平面,
∴平面,
∵平面,
∴,
又∵,
∴,
假設(shè),
∵, 點(diǎn),
∴平面,
∴,
與為銳角矛盾,
∴直線與直線不能垂直.
點(diǎn)睛:立體幾何中折疊問題,要注重折疊前后垂直關(guān)系的變化,不變的垂直關(guān)系是解決問題的關(guān)鍵條件. 探索性問題通常用“肯定順推法”,將不確定性問題明朗化.其步驟為假設(shè)滿足條件的位置關(guān)系存在,運(yùn)用分析法思想進(jìn)行推理,直至已知或矛盾.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖象上的點(diǎn)P(1,m)處的切線方程為y=﹣3x+1
(1)若函數(shù)f(x)在x=﹣2時(shí)有極值,求f(x)的表達(dá)式.
(2)若函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的半焦距為c,且過點(diǎn),原點(diǎn)O到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為.
(1)求橢圓E的方程;
(2)A為橢圓E上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足,過點(diǎn)P的直線交橢圓E于B,C兩點(diǎn),且,若直線OA,OB的斜率之積為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為的正方體上,分別用過共頂點(diǎn)的三條棱中點(diǎn)的平面截該正方形,則截去個(gè)三棱錐后,剩下的幾何體的體積是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方上的動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在周長為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列是遞增數(shù)列,其前項(xiàng)和為,且.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),求數(shù)列的前 項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com