【題目】如圖,在周長(zhǎng)為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為(  )

A.1
B.2
C.3
D.4

【答案】C
【解析】解:作F點(diǎn)關(guān)于BD的對(duì)稱點(diǎn)F′,則PF=PF′,連接EF′交BD于點(diǎn)P.
∴EP+FP=EP+F′P.
由兩點(diǎn)之間線段最短可知:當(dāng)E、P、F′在一條直線上時(shí),EP+FP的值最小,此時(shí)EP+FP=EP+F′P=EF′.
∵四邊形ABCD為菱形,周長(zhǎng)為12,
∴AB=BC=CD=DA=3,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四邊形AEF′D是平行四邊形,
∴EF′=AD=3.
∴EP+FP的最小值為3.
故選:C.

作F點(diǎn)關(guān)于BD的對(duì)稱點(diǎn)F′,則PF=PF′,由兩點(diǎn)之間線段最短可知當(dāng)E、P、F′在一條直線上時(shí),EP+FP有最小值,然后求得EF′的長(zhǎng)度即可.本題主要考查的是菱形的性質(zhì)、軸對(duì)稱﹣﹣路徑最短問(wèn)題,明確當(dāng)E、P、F′在一條直線上時(shí)EP+FP有最小值是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對(duì)于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,AB⊥平面PAC,∠APC=90°,E是AB的中點(diǎn),M是CE的中點(diǎn),N點(diǎn)在PB上,且4PN=PB.
(Ⅰ)證明:平面PCE⊥平面PAB;
(Ⅱ)證明:MN∥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, , 中點(diǎn), (不同于點(diǎn)),延長(zhǎng),將沿折起,得到三棱錐,如圖所示.

Ⅰ)若的中點(diǎn),求證:直線平面

Ⅱ)求證:

Ⅲ)若平面平面,試判斷直線與直線能否垂直?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面

底面,且, 、分別為、的中點(diǎn).

1)求證: 平面

2)求證:面平面;

3)在線段上是否存在點(diǎn),使得二面角的余弦值為?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓

)設(shè),求過(guò)點(diǎn)且與圓相切的直線方程.

)設(shè),直線過(guò)點(diǎn)且被圓截得的弦長(zhǎng)為,求直線的方程.

)設(shè),直線過(guò)點(diǎn),求被圓截得的線段的最短長(zhǎng)度,并求此時(shí)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)內(nèi)某知名連鎖店分店開(kāi)張營(yíng)業(yè)期間,在固定的時(shí)間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效展開(kāi),參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該分店經(jīng)理對(duì)開(kāi)業(yè)前7天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示開(kāi)業(yè)第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:

經(jīng)過(guò)進(jìn)一步的統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程

(2)若該分店此次抽獎(jiǎng)活動(dòng)自開(kāi)業(yè)始,持續(xù)10天,參加抽獎(jiǎng)的每位顧客抽到一等獎(jiǎng)(價(jià)值200元獎(jiǎng)品)的概率為,抽到二等獎(jiǎng)(價(jià)值100元獎(jiǎng)品)的概率為,抽到三等獎(jiǎng)(價(jià)值10元獎(jiǎng)品)的概率為,試估計(jì)該分店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)送出多少元獎(jiǎng)品?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實(shí)行階梯水價(jià).水價(jià)分檔遞增,計(jì)劃使第一檔、第二檔和第三檔的水價(jià)分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬(wàn)戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計(jì)圖.如圖所示,下面四個(gè)推斷( 。
①年用水量不超過(guò)180m3的該市居民家庭按第一檔水價(jià)交費(fèi);
②年用水量超過(guò)240m3的該市居民家庭按第三檔水價(jià)交費(fèi);
③該市居民家庭年用水量的中位數(shù)在150﹣180之間;
④該市居民家庭年用水量的平均數(shù)不超過(guò)180.

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC中,

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案