(本題滿分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(1)求的通項(xiàng)公式;
(2)在中是否存在使得中的項(xiàng),若存在,請寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請說明理由.
(1) (2)

試題分析:解:(I)當(dāng)時(shí),………………………………2分
當(dāng)時(shí),
兩式相減得:,即:…………………………………………6分
故{}為首項(xiàng)和公比均為的等比數(shù)列,……………………………8分
(II)設(shè)中第m項(xiàng)滿足題意,即,即
所以
 (其它形如的數(shù)均可)……………………12分
點(diǎn)評:解決的關(guān)鍵是利用前n項(xiàng)和與其通項(xiàng)公式的關(guān)系式,對于n分類討論得到其通項(xiàng)公式,并能通過驗(yàn)證來說明是否有滿足題意的項(xiàng),屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是等差數(shù)列的前項(xiàng)和,且,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列
A.28B.33 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知等差數(shù)列),求證:仍為等差數(shù)列;
(2)已知等比數(shù)列),類比上述性質(zhì),寫出一個(gè)真命題并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,且點(diǎn)在直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項(xiàng)和。試問:是否存在關(guān)于的整式,使得
對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列的前項(xiàng)和記為
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)等差數(shù)列的各項(xiàng)為正,其前項(xiàng)和為,且,又成等比數(shù)列,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,已知,則該數(shù)列前11項(xiàng)和(   )
A.58B.88C.143D.176

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的通項(xiàng),其前項(xiàng)和為,則          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列滿足:。
(1)求證:
(2)若,對任意的正整數(shù)恒成立,求的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案