精英家教網 > 高中數學 > 題目詳情
根據下列條件求拋物線的標準方程:
(1)拋物線的焦點是雙曲線16x2-9y2=144的左頂點;
(2)過點P(2,-4).
(1)∵雙曲線16x2-9y2=144化成標準方程得
x2
9
-
y2
16
=144
,
∴a2=9且b2=16,可得a=3且b=4,雙曲線的左頂點為(-3,0).
又∵拋物線的焦點是雙曲線的左頂點,∴拋物線的開口向左,
設拋物線的方程為y2=-2px(p>0),可得-
p
2
=-3,解得p=6.
因此,所求拋物線的方程為y2=-12x;
(2)根據點P(2,-4)在第四象限,可得拋物線開口向右或開口向下.
①當拋物線的開口向右時,設拋物線方程為y2=2px(p>0),
將P的坐標代入,得(-4)2=2p×2,解之得p=4,
∴此時拋物線的方程為y2=8x;
②當拋物線的開口向右時,用類似于①的方法可得拋物線的方程為x2=-y.
綜上所述,所求拋物線的方程為y2=8x或x2=-y.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知點是拋物線上一點,點到拋物線的準線的距離為,到直線的距離為,則的最小值是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

到橢圓
x2
8
+
y2
4
=1
左焦點的距離與到定直線x=2距離相等的動點軌跡方程是______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知點A(4,8),B(x1,y1),C(x2,y2)在拋物線y2=2px上,△ABC的重心與此拋物線的焦點F重合,M為BC中點.
(Ⅰ)求該拋物線的方程和焦點F的坐標;
(Ⅱ)求BC所在直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

頂點為原點,焦點為F(0,-1)的拋物線方程是(  )
A.y2=-2xB.y2=-4xC.x2=-2yD.x2=-4y

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

根據下列條件,求出拋物線的標準方程.
(1)過點(-3,2).
(2)焦點在x軸上,且拋物線上一點A(3,m)到焦點的距離為5.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線y2=2px過點M(2,2),則點M到拋物線焦點的距離為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

準線方程為x=-1的拋物線的標準方程為( 。
A.y2=-4xB.y2=4xC.y2=-2xD.y2=2x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一輛卡車高3米,寬2米,欲通過斷面為拋物線型的隧道,已知拱口寬恰好是拱高的2倍,若拱口寬為2a米,求使卡車通過的a的最小整數值.

查看答案和解析>>

同步練習冊答案