已知函數(shù)f(x)=a|x|+ (a>0,a≠1)
(1)若a>1,且關(guān)于x的方程f(x)=m有兩個不同的正數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)g(x)=" f(" x),x∈[ 2,+∞),滿足如下性質(zhì):若存在最大(小)值,則最大(。┲蹬ca無關(guān).試求a的取值范圍.
(1)實(shí)數(shù)的取值范圍為區(qū)間;(2)實(shí)數(shù)a的取值范圍是.

試題分析:(1)令,換元將問題轉(zhuǎn)化為關(guān)于的方程有相異的且均大于1的兩根,利用二次函數(shù)的性質(zhì)解答即可;(2)算得,分類討論①當(dāng),②當(dāng),再分,討論解答.
試題解析:(1)令,,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024723791326.png" style="vertical-align:middle;" />,所以,所以關(guān)于的方程有兩個不同的正數(shù)解等價于關(guān)于的方程有相異的且均大于1的兩根,即關(guān)于的方程有相異的且均大于1的兩根,                2分
所以,                         4分
解得,故實(shí)數(shù)的取值范圍為區(qū)間.           6分
(2)
①當(dāng)時,
a)時,,,所以 ,
b)時,,所以   8分
ⅰ)當(dāng)時,對,,所以 上遞增,
所以 ,綜合a) b)有最小值為與a有關(guān),不符合 10分
ⅱ)當(dāng)時,由,且當(dāng)時,,當(dāng)時,,所以 上遞減,在上遞增,所以,綜合a) b) 有最小值為與a無關(guān),符合要求.   12分
②當(dāng)時,
a) 時,,,所以
b) 時,,,
所以  ,上遞減,
所以 ,綜合a) b) 有最大值為與a有關(guān),不符合  15分
綜上所述,實(shí)數(shù)a的取值范圍是.                  16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),點(diǎn)在曲線:上.
(1)若點(diǎn)在第一象限內(nèi),且,求點(diǎn)的坐標(biāo);
(2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若在[-3,2]上具有單調(diào)性,求實(shí)數(shù)的取值范圍。
(2)若有最小值為-12,求實(shí)數(shù)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)當(dāng)時,解不等式
(2)若函數(shù)有最大值,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù).若的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023016561303.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意a∈[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范圍是(  )
A.(1,3)B.(-∞,1)∪(3,+∞)
C.(1,2)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在同一直角坐標(biāo)系中的圖像可能是(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)若命題“”為真,則m的取值范圍是___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍
是( )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案