【題目】如圖,是底面邊長(zhǎng)為2,高為的正三棱柱,經(jīng)過AB的截面與上底面相交于PQ, 設(shè).

證明:;

當(dāng)時(shí),求點(diǎn)C到平面APQB的距離.

【答案】 )見解析

【解析】

試題分析:I由平面,利用線面平行的性質(zhì)定理可得:,又,即可證明II連結(jié),點(diǎn)到平面的距離等于三棱錐的高,設(shè)其值為,

當(dāng)時(shí),,四邊形是等腰梯形,經(jīng)計(jì)算得梯形的高為,由此計(jì)算出 ,然后再根據(jù),可得,由此即可求出結(jié)果.

試題解析: 證明:∵ 是正三棱柱,

∴平面//平面……2分

∵平面平面=,平面平面=

連結(jié),點(diǎn)到平面的距離等于三棱錐的高,設(shè)其值為

當(dāng)時(shí),,四邊形是等腰梯形,經(jīng)計(jì)算得梯形的高為

,

是正三棱柱,∴

得到

所以點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年天貓五一活動(dòng)結(jié)束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元的人群的年齡狀況,隨機(jī)在當(dāng)?shù)叵M(fèi)超過3000元的群眾中抽取了500人作調(diào)查,所得概率分布直方圖如圖所示:記年齡在, 對(duì)應(yīng)的小矩形的面積分別是,且.

(1)以頻率作為概率,若該地區(qū)五一消費(fèi)超過3000元的有30000人,試估計(jì)該地區(qū)在五一活動(dòng)中消費(fèi)超過3000元且年齡在的人數(shù);

(2)計(jì)算在五一活動(dòng)中消費(fèi)超過3000元的消費(fèi)者的平均年齡;

(3)若按照分層抽樣,從年齡在 的人群中共抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人作深入調(diào)查,求至少有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù),為自然對(duì)數(shù)的底數(shù).

1)當(dāng)時(shí),求的最大值;

2)若在區(qū)間上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

(Ⅰ)當(dāng)直線過點(diǎn)P且與圓心C的距離為1時(shí),求直線的方程;

(Ⅱ)設(shè)過點(diǎn)P的直線與圓C交于A、B兩點(diǎn),若|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線).

(1)證明:直線過定點(diǎn);

(2)若直線不經(jīng)過第四象限,求的取值范圍;

(3)若直線軸負(fù)半軸于,交軸正半軸于,△的面積為為坐標(biāo)原點(diǎn)),求的最小值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x) (m0,n0)

(1) 當(dāng)mn1時(shí)求證:f(x)不是奇函數(shù);

(2) 設(shè)f(x)是奇函數(shù)mn的值;

(3) (2)的條件下,求不等式f(f(x))f <0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,且橢圓C過點(diǎn)P3,2

求橢圓C的標(biāo)準(zhǔn)方程;

與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔參加“全市高中數(shù)學(xué)競(jìng)賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

(1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競(jìng)賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知以點(diǎn)A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于MN兩點(diǎn),QMN的中點(diǎn),直線ll1相交于點(diǎn)P.

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案