【題目】在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù) 和 描述,如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開(kāi)始工作,那么,原本平靜的水面將呈現(xiàn)的狀態(tài)是( )
A.仍保持平靜
B.不斷波動(dòng)
C.周期性保持平靜
D.周期性保持波動(dòng)
【答案】A
【解析】解答:∵ + =sint+sintcos +costsin +sintcos +costsin
=sint﹣ sint+ cost﹣ sint﹣ cost
=sint﹣sint=0
即三個(gè)振動(dòng)源同時(shí)開(kāi)始工作時(shí),水面仍保持平靜
故選A
分析:由題目中如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),則在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開(kāi)始工作,水面波動(dòng)由三個(gè)函數(shù)的和表達(dá),我們計(jì)算出 + 值,然后結(jié)合實(shí)際問(wèn)題即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=2py上點(diǎn)(2,2)處的切線經(jīng)過(guò)橢圓 的兩個(gè)頂點(diǎn).
(1)求橢圓E的方程;
(2)過(guò)橢圓E的上頂點(diǎn)A的兩條斜率之積為﹣4的直線與該橢圓交于B,C兩點(diǎn),是否存在一點(diǎn)D,使得直線BC恒過(guò)該點(diǎn)?若存在,請(qǐng)求出定點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若△ABC的重心為G,當(dāng)邊BC的端點(diǎn)在橢圓E上運(yùn)動(dòng)時(shí),求|GA|2+|GB|2+|GC|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 是偶函數(shù),求解下列問(wèn)題.
(1)求θ;
(2)將函數(shù)y=f(x)的圖象先縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的 倍,再向左平移 個(gè)單位,然后向上平移1個(gè)單位得到y(tǒng)=g(x)的圖象,若關(guān)于x的方程 在 有且只有兩個(gè)不同的根,求m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查觀眾對(duì)某電視劇的喜愛(ài)程度,某電視臺(tái)在甲乙兩地隨機(jī)抽取了8名觀眾做問(wèn)卷調(diào)查,得分結(jié)果如圖所示:
(1)計(jì)算甲地被抽取的觀眾問(wèn)卷得分的中位數(shù)和乙地被抽取的觀眾問(wèn)卷得分的平均數(shù);
(2)若從乙地被抽取的8名觀眾中邀請(qǐng)2人參加調(diào)研,求參加調(diào)研的觀眾中恰有1人的問(wèn)卷調(diào)查成績(jī)?cè)?0分以上(含90分)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直l的參數(shù)方程是(t是參數(shù))
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且|AB|=,求直線的傾斜角α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )+f( )等于( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有 . (寫(xiě)出所有正確說(shuō)法的序號(hào)) ①已知關(guān)于x的不等式mx2+mx+2>0的角集為R,則實(shí)數(shù)m的取值范圍是0<m<4.
②已知等比數(shù)列{an}的前n項(xiàng)和為Sn , 則Sn、S2n﹣Sn、S3n﹣S2n也構(gòu)成等比數(shù)列.
③已知函數(shù) (其中a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程 恰有兩個(gè)不相等的實(shí)數(shù)解,則 .
④已知a>0,b>﹣1,且a+b=1,則 + 的最小值為 .
⑤在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),| |=| |=| |=1, + + = ,A(1,1),則 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】集合M={x|﹣2≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中, 是自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)減區(qū)間;
(3)若在恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com