已知直線l:y=k(x-1)-
3
與圓x2+y2=1相切,則直線l的傾斜角為( 。
A、
π
6
B、
π
2
C、
3
D、
6
分析:相切?圓到到切線的距離等于R,故應(yīng)通過d=r建立關(guān)于k 的方程求k.
解答:解:直線l:y=k(x-1)-
3
與圓x2+y2=1相切,
|k+
3
|
1+ k2
=1
∴1+k2=k2+2
3
k+3
∴k=-
3
3

∴傾斜角為
6

故應(yīng)選D.
點(diǎn)評(píng):考查直線與圓的位置關(guān)系之相切位置關(guān)系的轉(zhuǎn)化.解決本題也可用把直線與圓的方程聯(lián)立用判別式等于零建立方程求k.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=k(x-5)及圓C:x2+y2=16.
(1)若直線l與圓C相切,求k的值;
(2)若直線l與圓C交于A、B兩點(diǎn),求當(dāng)k變動(dòng)時(shí),弦AB的中點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=k(x-2)(k>0)與拋物線C:y2=8x交于A,B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若
AF
=2
FB
,則k的值是( 。
A、
1
3
B、
2
2
3
C、2
2
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=k(x+2
2
)與圓O:x2+y2=4相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),三角形ABO的面積為S.
(Ⅰ)試將S表示成的函數(shù)S(k),并求出它的定義域;
(Ⅱ)求S的最大值,并求取得最大值時(shí)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=k(x+1)與拋物線C:y2=4x.
(1)當(dāng)k為何值時(shí),直線l與拋物線C只有一個(gè)公共點(diǎn).
(2)當(dāng)k為何值時(shí),直線l與拋物線C有兩個(gè)不同的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=k(x+2
2
)
交橢圓x2+9y2=9于A、B兩點(diǎn),若|AB|=2,則k的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案