精英家教網 > 高中數學 > 題目詳情
雙曲線的一條漸近線的傾斜角為,離心率為,則的最小值為( )
A.B.C.D.
A

試題分析:由已知的當且僅當時等號成立
點評:均值不等式求最值要驗證等號成立條件,等號成立時取得最值,本題涉及到的知識點較多,題目有一定難度
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點分別為,離心率, .
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知直線與拋物線相交于、兩點,為拋物線的焦點,若,則的值為         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(   )
A.B.2C.3D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知當橢圓的長軸、短軸、焦距依次成等比時稱橢圓為“黃金橢圓”,請用類比的性質定義“黃金雙曲線”,并求“黃金雙曲線”的離心率為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若曲線的焦點F恰好是曲線的右焦點,且交點的連線過點F,則曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點為拋物線上一點,記點軸距離,點到直線的距離,則的最小值為____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過點
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點且,求直線的方程.

查看答案和解析>>

同步練習冊答案