【題目】對于函數(shù):①,,,判斷如下三個命題的真假:

命題甲: 是偶函數(shù);

命題乙: 上是減函數(shù),在上是增函數(shù);

命題丙: 是增函數(shù).

則能使命題甲、乙、丙均為真的所有函數(shù)的序號是__________

【答案】

【解析】對于第一個,令, ,從而可知不是增函數(shù),不符合命題丙.對于第三個, 不是偶函數(shù),不符合命題甲.對于第二個, ,為偶函數(shù),符合命題甲,由于是對稱軸為的偶函數(shù),且開口向上,符合命題乙. 上的增函數(shù),符合命題丙,故第二個函數(shù)符合題意.

點睛:本題主要考查函數(shù)的單調性與奇偶性.對于命題甲的判斷,只需要先將的表達式求解出來,利用奇偶性的定義來判斷即可.對于命題乙的判斷,需要我們根據(jù)所給函數(shù)的單調性來具體判斷.對于命題丙,需要先求出的表達式,然后根據(jù)表達式來判斷.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是(

A.在三角形中,已知兩邊及其一邊的對角,不能用余弦定理求解三角形

B.余弦定理揭示了任意三角形邊角之間的關系,因此它適用于任何三角形

C.利用余弦定理,可以解決已知三角形三邊求角的問題

D.在三角形中,勾股定理是余弦定理的特例

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,首項, .

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項公式以及前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有以下四個命題:

①底面是平行四邊形的四棱柱是平行六面體;

②底面是矩形的平行六面體是長方體;

③直四棱柱是直平行六面體;

④棱臺的相對側棱延長后必交于一點.

其中正確命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,討論函數(shù)在區(qū)間上零點的個數(shù);

2證明:當,時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有標號1、2、3、4的4張形狀大小完全相同的標簽,先后隨機地選取兩張標簽,根據(jù)下列條件,分別求兩張標簽上的數(shù)字為相鄰整數(shù)的概率.

1標簽的選取是無放回的;

2標簽的選取是有放回的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次籃球定點投籃訓練中,規(guī)定每人最多投3次,在處每投進一球得3分;在處每投進一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學在處的投中率,在處的投中率為,該同學選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學投籃訓練結束后所得的總分,其分布列為:

0

2

3

4

5

0.03

(1)求的值;

(2)求隨機變量的數(shù)學期望;

(3)試比較該同學選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】春節(jié)期間某超市搞促銷活動,當顧客購買商品的金額達到一定數(shù)量后可以參加抽獎活動,活動規(guī)則為:從裝有個黑球, 個紅球, 個白球的箱子中(除顏色外,球完全相同)摸球.

(Ⅰ)當顧客購買金額超過元而不超過元時,可從箱子中一次性摸出個小球,每摸出一個黑球獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,每摸出一個白球獎勵元的現(xiàn)金,求獎金數(shù)不少于元的概率;

(Ⅱ)當購買金額超過元時,可從箱子中摸兩次,每次摸出個小球后,放回再摸一次,每摸出一個黑球和白球一樣獎勵元的現(xiàn)金,每摸出一個紅球獎勵元的現(xiàn)金,求獎金數(shù)小于元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知渡船在靜水中速度的大小為,河水流速的大小為.如圖渡船船頭

方向與水流方向成夾角,且河面垂直寬度為.

(Ⅰ)求渡船的實際速度與水流速度的夾角;

(Ⅱ)求渡船過河所需要的時間.[提示: ]

查看答案和解析>>

同步練習冊答案