【題目】如圖,在正方體ABCD-A1B1C1D1中,E , F分別為棱AB , CC1的中點(diǎn),則在平面ADD1A1內(nèi)且與平面D1EF平行的直線( )
A.不存在
B.有1條
C.有2條
D.有無(wú)數(shù)條
【答案】D
【解析】在 上取一點(diǎn) ,使得 ,連接 ,可證得 ,所以 四點(diǎn)共面,所以在平面 內(nèi),
平行于 的直線均平行于平面 ,這樣的直線有無(wú)數(shù)條,故D符合題意。
所以答案是D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)直線與平面平行的性質(zhì)的理解,了解一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡(jiǎn)記為:線面平行則線線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則:
①mn=nm類比得到ab=ba;
②(m+n)t=mt+nt類比得到(a+b)c=ac+bc;
③(mn)t=m(nt) 類比得到(ab)c=a(bc);
④t≠0,mt=rtm=r類比得到p≠0,ap=bpa=b;
⑤|mn|=|m||n|類比得到|ab|=|a||b|;
⑥ = 類比得到 .
以上式子中,類比得到的結(jié)論正確的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=1,數(shù)列{bn}為等差數(shù)列,且b1+b2=b3=3.
(1)求Sn;
(2)求數(shù)列(anbn)的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)動(dòng)點(diǎn)P在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的對(duì)角線BD1上,記 =λ.當(dāng)∠APC為銳角時(shí),λ的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD中,AB=2 ,AD= ,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線段DB上的一動(dòng)點(diǎn),問點(diǎn)E在何位置時(shí),二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在空間四邊形ABCD中,E , F分別為AB , AD上的點(diǎn),且 ,H , G分別為BC , CD的中點(diǎn),則( )
A.BD∥平面EFGH , 且四邊形EFGH是平行四邊形
B.EF∥平面BCD , 且四邊形EFGH是梯形
C.HG∥平面ABD , 且四邊形EFGH是平行四邊形
D.EH∥平面ADC , 且四邊形EFGH是梯形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長(zhǎng)為1的正三角形,側(cè)面為全等的矩形且高為8,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行一周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
本題條件不變,求一點(diǎn)自A點(diǎn)出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達(dá)A′點(diǎn)的最短路線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬(wàn)元/輛)進(jìn)行整理,得到如表的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣ )
(2)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬(wàn)元,根據(jù)(1)中所求的回歸方程,預(yù)測(cè)x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)L(x)最大?(利潤(rùn)=售價(jià)﹣收購(gòu)價(jià))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com