四面體ABCD中,設(shè)M是CD的中點(diǎn),則
AB
+
1
2
(
BD
+
BC
)
化簡(jiǎn)的結(jié)果是(  )
分析:由已知中四面體ABCD中,設(shè)M是CD的中點(diǎn),可得
BM
=
1
2
(
BD
+
BC
)
,代入根據(jù)向量加法的三角形法則,可得答案.
解答:解:∵四面體ABCD中,M是CD的中點(diǎn),
BM
=
1
2
(
BD
+
BC
)

AB
+
1
2
(
BD
+
BC
)

=
AB
+
BM

=
AM

故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是向量加法及其幾何意義,其中根據(jù)M是CD的中點(diǎn),得到
BM
=
1
2
(
BD
+
BC
)
是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體ABCD中,設(shè)AB=1,CD=2且AB⊥CD,若異面直線AB與CD間的距離為2,則四面體ABCD的體積為(  )
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四面體ABCD中,設(shè)AB=1,CD=
3
,直線AB與CD的距離為2,夾角為
π
3
,則四面體ABCD的體積等于( 。
A、
3
2
B、
1
2
C、
1
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶二模)在四面體ABCD中,設(shè)AB=1,CD=2且AB⊥CD,若異面直線AB與CD間的距離為2,則四面體ABCD的體積為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(diǎn)(1,1)為中點(diǎn)的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過(guò)點(diǎn)(
.
x
.
y
)
;
(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點(diǎn)為F1,F(xiàn)2,P為右支是異于右頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓圓心為T,則點(diǎn)T的橫坐標(biāo)為a.其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案