【題目】已知常數(shù)項(xiàng)為的函數(shù)的導(dǎo)函數(shù)為,其中為常數(shù).
(1)當(dāng)時(shí),求的最大值;
(2)若在區(qū)間(為自然對(duì)數(shù)的底數(shù))上的最大值為,求的值.
【答案】(1);(2).
【解析】
試題分析:
(1)根據(jù)題意由導(dǎo)函數(shù)得到函數(shù)的解析式為,故當(dāng)時(shí),,然后根據(jù)導(dǎo)函數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,從而可求得最大值.(2)求導(dǎo)后得,然后根據(jù)和兩種情況分別討論函數(shù)的單調(diào)性,并進(jìn)一步求出最大值后進(jìn)行判斷可得的值為.
試題解析:
(1)∴函數(shù)的常數(shù)項(xiàng)為,
.
當(dāng)時(shí),,
∴ ,
∴當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.
∴當(dāng)時(shí),有極大值,也為最大值,且.
(2)
①若,則在上是增函數(shù),
,不合題意.
②若,
則當(dāng)時(shí),單調(diào)遞增;
當(dāng)時(shí),單調(diào)遞減.
∴當(dāng)時(shí),函數(shù)有極大值,也為最大值,且,
令
則
解得,符合題意.
綜上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)是橢圓上的一點(diǎn),在軸上的射影恰為橢圓的左焦點(diǎn),與中心的連線(xiàn)平行于右頂點(diǎn)與上頂點(diǎn)的連線(xiàn),且左焦點(diǎn)與左頂點(diǎn)的距離等于,試求橢圓的離心率及其方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)。
(1)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線(xiàn)方程;
(2)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若存在,使得關(guān)于x的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓: 的離心率為,上、下頂點(diǎn)分別為、,點(diǎn)在橢圓上,且異于點(diǎn)、,直線(xiàn)、與直線(xiàn): 分別交于點(diǎn)、,且面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求線(xiàn)段的長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在高三一班元旦晚會(huì)上,有6個(gè)演唱節(jié)目,4個(gè)舞蹈節(jié)目.
(1)當(dāng)4個(gè)舞蹈節(jié)目接在一起時(shí),有多少種不同的節(jié)目安排順序?
(2)當(dāng)要求每2個(gè)舞蹈節(jié)目之間至少安排1個(gè)演唱節(jié)目時(shí),有多少種不同的節(jié)目安排順序?
(3)若已定好節(jié)目單,后來(lái)情況有變,需加上詩(shī)歌朗誦和快板2個(gè)節(jié)目,但不能改變?cè)瓉?lái)節(jié)目的相對(duì)順序,有多少種不同的節(jié)目演出順序?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求單調(diào)區(qū)間;
(2)設(shè),證明:在上有最小值;設(shè)在上的最小值為,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在側(cè)棱垂直底面的四棱柱中,,,.,,,分別是的中點(diǎn),為與的交點(diǎn).
(I) 求線(xiàn)段,的長(zhǎng)度;
(II)證明:平面;
(III)求與平面所成的角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com