如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。
(1)
(2) CH不可能同時(shí)垂直BD和BA,即CH不與面ABD垂直
解析試題分析:解: 依題意,ABD=90o,建立如圖的坐標(biāo)系使得△ABC在yoz平面上,
△ABD與△ABC成30o的二面角, DBY=30o,又AB=BD=2, A(0,0,2),B(0,0,0),
C(0,,1),D(1,,0),
(1)x軸與面ABC垂直,故(1,0,0)是面ABC的一個(gè)法向量。
設(shè)CD與面ABC成的角為,而= (1,0,-1),
sin==
[0,],=; 6分
(2) 設(shè)=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
若,則 (t,t-,-2 t+1)·(0,0,2)="0" 得t=, 10分
此時(shí)=(,-,0),而=(1,,0),·=-=-10, 和不垂直,即CH不可能同時(shí)垂直BD和BA,即CH不與面ABD垂直。 12分
考點(diǎn):空間中線面的位置關(guān)系
點(diǎn)評(píng):主要是考查了空間中線面位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知:菱形所在平面與直角梯形所在平面互相垂直,,點(diǎn)分別是線段的中點(diǎn).
(1)求證:平面平面;
(2)點(diǎn)在直線上,且//平面,求平面與平面所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面四邊形的4個(gè)頂點(diǎn)都在球的表面上,為球的直徑,為球面上一點(diǎn),且平面 ,,點(diǎn)為的中點(diǎn).
(1) 證明:平面平面;
(2) 求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中, ,,,點(diǎn)是的中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)設(shè)點(diǎn)在線段上,,且使直線和平面所成的角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn).
(1)求異面直線與所成的角的余弦值
(2)求二面角的余弦值
(3)點(diǎn)到面的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在三棱錐中,平面,,分別是的中點(diǎn),,與交于,與交于點(diǎn),連接。
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱柱中,側(cè)棱底面,
(Ⅰ)求證:平面
(Ⅱ)若直線與平面所成角的正弦值為,求的值
(Ⅲ)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式。(直接寫出答案,不必說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com