【題目】若函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),.
(Ⅰ)若,求函數(shù)的解析式;
(Ⅱ)若,方程至少有兩個(gè)不等的解,求的取值集合;
(Ⅲ)若函數(shù)為上的單調(diào)減函數(shù),
①求的取值范圍;
②若不等式成立,求實(shí)數(shù)的取值集合.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)①,②
【解析】
首先根據(jù)函數(shù)的奇偶性求出函數(shù)解析式為,
(Ⅰ)將代入即可;(Ⅱ)將代入求出此時(shí)函數(shù)解析式,畫(huà)出函數(shù)圖象,方程的解,轉(zhuǎn)化為函數(shù)與的交點(diǎn),數(shù)形結(jié)合即可求解;(Ⅲ)將各段函數(shù)配成標(biāo)準(zhǔn)式,求出其對(duì)稱(chēng)軸,根據(jù)函數(shù)在定義域上單調(diào)遞減求出參數(shù)的值,根據(jù)函數(shù)的奇偶性及單調(diào)性將函數(shù)不等式轉(zhuǎn)化為自變量的不等式,最后解一元二次不等式即可;
解:因?yàn)楹瘮?shù)是定義在上的奇函數(shù),且當(dāng)時(shí),.
設(shè)則,
因?yàn)?/span>
所以,,
綜上
(Ⅰ)當(dāng)時(shí),;
(Ⅱ)當(dāng)時(shí),,可畫(huà)函數(shù)圖象如下所示:
因?yàn)榉匠?/span>至少有兩個(gè)不等的解,即函數(shù)與至少有兩個(gè)交點(diǎn),
從函數(shù)圖象可知
即
(Ⅲ)因?yàn)楹瘮?shù)為上的單調(diào)減函數(shù),
①當(dāng)時(shí),對(duì)稱(chēng)軸,所以在上單調(diào)遞減,
由于奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上單調(diào)性相同,所以在上單調(diào)遞減,
所以時(shí),在上為單調(diào)遞減函數(shù),
當(dāng)時(shí),在遞增,在上遞減,不合題意,
所以函數(shù)為單調(diào)減函數(shù)時(shí),的范圍為.
②,,
又是奇函數(shù),,
又因?yàn)?/span>為上的單調(diào)遞減函數(shù),所以,
即解得或
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:相切的直線l交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)),求△AOB面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是偶函數(shù).
(1)若不等式對(duì)任意實(shí)數(shù)成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機(jī)抽取100名學(xué)生,進(jìn)行一次海洋知識(shí)測(cè)試,按測(cè)試成績(jī)(假設(shè)考試成績(jī)均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.
(1)求測(cè)試成績(jī)?cè)赱80,85)內(nèi)的頻率;
(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識(shí)宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機(jī)選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊(duì),求第四組至少有1名學(xué)生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正整數(shù)的所有約數(shù)之和用表示,(比如).試答下列各問(wèn):
(1)證明:如果和互質(zhì),那么;
(2)當(dāng)是的約數(shù)(),且.試證是質(zhì)數(shù).其次,如果是正整數(shù),是質(zhì)數(shù),試證也是質(zhì)數(shù);
(3)設(shè)(為正整數(shù),為奇數(shù)),且.試證存在質(zhì)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)傳統(tǒng)文化,某市舉辦了“高中生詩(shī)詞大賽”,現(xiàn)從全市參加比賽的學(xué)生中隨機(jī)抽取人的成績(jī)進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,其中成績(jī)的分組區(qū)間為,,,.
(1)求頻率分布直方圖中的值;
(2)在所抽取的名學(xué)生中,用分層抽樣的方法在成績(jī)?yōu)?/span>的學(xué)生中抽取了一個(gè)容量為的樣本,再?gòu)脑摌颖局腥我獬槿?/span>人,求人的成績(jī)均在區(qū)間內(nèi)的概率;
(3)若該市有名高中生參賽,根據(jù)此次統(tǒng)計(jì)結(jié)果,試估算成績(jī)?cè)趨^(qū)間內(nèi)的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x),給出下列判斷:(1)函數(shù)的值域?yàn)?/span>;(2)在定義域內(nèi)有三個(gè)零點(diǎn);(3)圖象是中心對(duì)稱(chēng)圖象.其中正確的判斷個(gè)數(shù)為( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某電子商務(wù)平臺(tái)隨機(jī)抽取了1000位網(wǎng)上購(gòu)物者(年消費(fèi)都達(dá)到2000元),并對(duì)他們的年齡進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示:
年齡 | ||||||
人數(shù) | 100 | 150 | 400 | 200 | 100 | 50 |
該電子商務(wù)平臺(tái)將年齡在的人群定義為消費(fèi)主力軍,其它年齡段定義為消費(fèi)潛力軍.
(1)若該電子商務(wù)平臺(tái)共10萬(wàn)位網(wǎng)上購(gòu)物者,試估計(jì)消費(fèi)主力軍的人數(shù);
(2)為了鼓勵(lì)消費(fèi)潛力軍消費(fèi),該平臺(tái)決定對(duì)年消費(fèi)達(dá)到2000元的購(gòu)物者發(fā)放代金券,消費(fèi)主力軍每人發(fā)放100元,消費(fèi)潛力軍每人發(fā)放200元.現(xiàn)采用分層抽樣(按消費(fèi)主力軍與消費(fèi)潛力軍分層)的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)物者中抽取10人,并在這10人中隨機(jī)抽取3人進(jìn)行回訪,求這3人獲得代金券總金額(單位:元)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程為 .
(1)求直線和曲線的普通方程;
(2)已知點(diǎn),且直線和曲線交于兩點(diǎn),求 的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com