設(shè)數(shù)列{an}共有n)項(xiàng),且,對(duì)每個(gè)i (1≤i,iN),均有
(1)當(dāng)時(shí),寫(xiě)出滿足條件的所有數(shù)列{an}(不必寫(xiě)出過(guò)程);
(2)當(dāng)時(shí),求滿足條件的數(shù)列{an}的個(gè)數(shù).

(1)共有3個(gè):; 1,1,1; 1,2,1;(2)數(shù)列{an}的個(gè)數(shù)為393.

解析試題分析:(1)根據(jù)題意可得當(dāng)時(shí),有,因?yàn)轭}中要求,也就是說(shuō),,這樣即可得,故此時(shí)滿足條件的數(shù)列{an}共有3個(gè):; 1,1,1; 1,2,1;(2)由題中要求可聯(lián)想到令bi (1≤i≤7),則對(duì)每個(gè)符合條件的數(shù)列{an},滿足條件:,且bi (1≤i≤7),則此時(shí)可設(shè)符合條件的數(shù)列{bn}的個(gè)數(shù)為N, bi (1≤i≤7)中有k個(gè)2;從而有k個(gè),7-2k個(gè)1,當(dāng)k給定時(shí),{bn}的取法有種,故此時(shí)
試題解析:(1)當(dāng)時(shí),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/2/1tn4v4.png" style="vertical-align:middle;" />,,即,
所以
故此時(shí)滿足條件的數(shù)列{an}共有3個(gè):; 1,1,1; 1,2,1.          3分
(2)令bi (1≤i≤7),則對(duì)每個(gè)符合條件的數(shù)列{an},滿足條件:
,且bi (1≤i≤7).
反之,由符合上述條件的7項(xiàng)數(shù)列{bn}可唯一確定一個(gè)符合條件的8項(xiàng)數(shù)列{an}.   7分
記符合條件的數(shù)列{bn}的個(gè)數(shù)為N
顯然,bi (1≤i≤7)中有k個(gè)2;從而有k個(gè),7-2k個(gè)1.
當(dāng)k給定時(shí),{bn}的取法有種,易得k的可能值只有0,1,2,3,

因此,符合條件的數(shù)列{an}的個(gè)數(shù)為393.                                   10分
考點(diǎn):1.數(shù)列的遞推關(guān)系;2.排列組合的應(yīng)用;3.代數(shù)式的處理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足對(duì)任意的,都有.
(1)求的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)(其中),區(qū)間.
(1)求區(qū)間的長(zhǎng)度(注:區(qū)間的長(zhǎng)度定義為);
(2)把區(qū)間的長(zhǎng)度記作數(shù)列,令,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的首項(xiàng),
求數(shù)列的通項(xiàng)公式;
設(shè)的前項(xiàng)和為,若的最小值為,求的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

各項(xiàng)均為正數(shù)的數(shù)列{an}中,設(shè),,且
(1)設(shè),證明數(shù)列{bn}是等比數(shù)列;
(2)設(shè),求集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
(1)求第2行和第3行的通項(xiàng)公式;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列;
(3)求關(guān)于)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn·bn,證明:當(dāng)且僅當(dāng)n≥3時(shí),cn+1<cn..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案