【題目】某公司培訓(xùn)員工某項技能,培訓(xùn)有如下兩種方式:
方式一:周一到周五每天培訓(xùn)1小時,周日測試
方式二:周六一天培訓(xùn)4小時,周日測試
公司有多個班組,每個班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測試達(dá)標(biāo)的人數(shù)如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓(xùn),分別估計員工受訓(xùn)的平均時間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?
在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
【答案】(1)方式一(2)
【解析】
(1)用總的受訓(xùn)時間除以,得到平均受訓(xùn)時間.由此判斷出方式一效率更高.(2)利用分層抽樣的知識,計算得來自甲組人,乙組人.再利用列舉法求得“從這人中隨機抽取人,求這人中至少有人來自甲組的概率”.
解:(1)設(shè)甲乙兩組員工受訓(xùn)的平均時間分別為、,則
(小時)
(小時)
據(jù)此可估計用方式一與方式二培訓(xùn),員工受訓(xùn)的平均時間分別為10小時和10.9小時,因,據(jù)此可判斷培訓(xùn)方式一比方式二效率更高;
(2)從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,
則這6人中來自甲組的人數(shù)為:,
來自乙組的人數(shù)為:,
記來自甲組的2人為:;來自乙組的4人為:,則從這6人中隨機抽取
2人的不同方法數(shù)有:,,,,共15種,
其中至少有1人來自甲組的有:,
共9種,故所求的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式組表示的平面區(qū)域為D,的最大值等于8.
(1)求的值;
(2)求的取值范圍;
(3)若直線過點P(-3,3),求區(qū)域D在直線上的投影的長度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時)都在30小時以上,其中不足50小時的有5周,不低于50小時且不超過70小時的有35周,超過70小時的有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.
(1)依據(jù)上圖,是否可用線性回歸模型擬合與的關(guān)系?請計算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運行臺數(shù)受周光照量限制,并有如下關(guān)系:
周光照量(單位:小時) | |||
光照控制儀運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?
附:相關(guān)系數(shù)公式,
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個袋子里有形狀一樣僅顏色不同的6個小球,其中白球2個,黑球4個現(xiàn)從中隨機取球,每次只取一球.
若每次取球后都放回袋中,求事件“連續(xù)取球四次,至少取得兩次白球”的概率;
若每次取球后都不放回袋中,且規(guī)定取完所有白球或取球次數(shù)達(dá)到五次就終止游戲,記游戲結(jié)束時一共取球X次,求隨機變量X的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99的把握認(rèn)為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):P
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運輸公司年有萬輛公交車,計劃年投入輛新型號公交車,以后每年投入的新型號公交車數(shù)量均比上年增加.
(1)年應(yīng)投入多少輛新型號公交車?
(2)從年到年間共投入多少輛新型號公交車?
(3)從哪一年開始,該公司新型號公交車總量超過該公司公交車總量的?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教材中指出:當(dāng)很小,不太大時,可以用表示的近似值,即 (1),我們把近似值與實際值之差除以實際值的商的絕對值稱為“相對近似誤差”,一般用字母表示,即相對近似誤差
(1)利用(1)求出的近似值,并指出其相對近似誤差(相對近似誤差保留兩位有效數(shù)字)
(2)若利用(1)式計算的近似值產(chǎn)生的相對近似誤差不超過,求正實數(shù)的取值范圍;
(3)若利用(1)式計算的近似值產(chǎn)生的相對近似誤差不超過,求正整數(shù)的最大值。(參考對數(shù)數(shù)值:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且右焦點為.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于兩點,交軸于點.若,求證:為定值;
(3)在(2)的條件下,若點不在橢圓的內(nèi)部,點是點關(guān)于原點的對稱點,試求三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個焦點,且經(jīng)過點
(1)求的值;
(2)設(shè)為曲線上的動點,求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點三點,問是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com