【題目】設f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=x2 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是

【答案】[ ,+∞)
【解析】解:當x≥0時,f(x)=x2∵函數(shù)是奇函數(shù)
∴當x<0時,f(x)=﹣x2
∴f(x)= ,
∴f(x)在R上是單調遞增函數(shù),
且滿足2f(x)=f( x),
∵不等式f(x+t)≥2f(x)=f( x)在[t,t+2]恒成立,
∴x+t≥ x在[t,t+2]恒成立,
即:x≤(1+ )t在[t,t+2]恒成立,
∴t+2≤(1+ )t
解得:t≥ ,
所以答案是:[ ,+∞).
【考點精析】本題主要考查了函數(shù)奇偶性的性質的相關知識點,需要掌握在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知以點A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點B(﹣2,0)的動直線l與圓A相交于M、N兩點
(1)求圓A的方程.
(2)當|MN|=2 時,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)

某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率。

(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.學#@網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= (Ⅰ)當 時,求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)是(﹣∞,+∞)上的減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若 ,求函數(shù)的單調區(qū)間;

(Ⅱ)若對任意 都有恒成立,求實數(shù) 的取值范圍;

(Ⅲ)設函數(shù) ,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
(1)求m;
(2)當a>1時,若函數(shù)f(x)的圖像與直線l:y=﹣mx+n無公共點,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國歷法推測遵循以測為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其他節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.下表為《周髀算經(jīng)》對二十四節(jié)氣晷影長的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

春分(秋分)

晷影長(寸)

135

75.5

節(jié)氣

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影長(寸)

16.0

已知《易知》中記錄的冬至晷影長為130.0寸,夏至晷影長為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長應為__________寸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(I)若函數(shù)處的切線方程為,求的值;

(II)討論方程的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產甲、乙兩種產品,其產量分別為45個與55個,所用原料分別為A、B兩種規(guī)格的金屬板,每張面積分別為2m2與3m2 . 用A種規(guī)格的金屬板可造甲種產品3個,乙種產品5個;用B種規(guī)格的金屬板可造甲、乙兩種產品各6個.問A、B兩種規(guī)格的金屬板各取多少張,才能完成計劃,并使總的用料面積最?

查看答案和解析>>

同步練習冊答案