【題目】已知a∈R,i是虛數(shù)單位,命題p:在復平面內,復數(shù)z1=a+ 對應的點位于第二象限;命題q:復數(shù)z2=a﹣i的模等于2,若p∧q是真命題,則實數(shù)a的值等于( )
A.﹣1或1
B. 或
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某城市小區(qū)有一個矩形休閑廣場,AB=20米,廣場的一角是半徑為16米的扇形BCE綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場休閑放松,現(xiàn)決定在廣場上安置兩排休閑椅,其中一排是穿越廣場的雙人靠背直排椅MN(寬度不計),點M在線段AD上,并且與曲線CE相切;另一排為單人弧形椅沿曲線CN(寬度不計)擺放.已知雙人靠背直排椅的造價每米為2a元,單人弧形椅的造價每米為a元,記銳角∠NBE=θ,總造價為W元.
(1)試將W表示為θ的函數(shù)W(θ),并寫出cosθ的取值范圍;
(2)如何選取點M的位置,能使總造價W最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若關于x的實系數(shù)方程x2+ax+b=0有兩個根,一個根在區(qū)間(0,1)內,另一根在區(qū)間(1,3)內,記點(a,b)對應的區(qū)域為S.
(1)設z=2a﹣b,求z的取值范圍;
(2)過點(﹣5,1)的一束光線,射到x軸被反射后經過區(qū)域S,求反射光線所在直線l經過區(qū)域S內的整點(即橫縱坐標為整數(shù)的點)時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,為的中點.
(1)求證:;
(2)在線段上是否存在點,使二面角的大小為,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統(tǒng)計得頻率分布直方圖如圖所示.
(1) 試估計這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(2)某經銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經銷商提出如下兩種收購方案:
A:所有芒果以元/千克收購;
B:對質量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在原點處的切線為.
(1)證明:曲線與軸正半軸有交點;
(2)設曲線與軸正半軸的交點為,曲線在點處的切線為直線,求證:曲線上的點都不在直線的上方;
(3)若關于的方程(為正實數(shù))有不等實根,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com