【題目】已知平面向量 滿足| |=1,| |=2.
(1)若 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求實(shí)數(shù)k的值.

【答案】
(1)解:| |=1,| |=2,若 的夾角θ=120°,則 =12cos120°=﹣1,

∴| + |= = = =


(2)解:∵(k + )⊥(k ),∴(k + )(k )=k2 =k2﹣4=0,

∴k=±2


【解析】(1)利用兩個(gè)向量數(shù)量積的定義,求得 的值,可得| + |= 的值.(2)利用兩個(gè)向量垂直的性質(zhì),可得(k + )(k )=k2a2 =0,由此求得k的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年某招聘會(huì)上,有5個(gè)條件很類似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書工作,但只有2個(gè)秘書職位,因此5人中僅有2人被錄用,如果5個(gè)人被錄用的機(jī)會(huì)相等,分別計(jì)算下列事件的概率:
(1)C得到一個(gè)職位
(2)B或E得到一個(gè)職位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元),有如下的統(tǒng)計(jì)數(shù)據(jù)(xi , yi)(i=1,2,3,4,5)由資料知y對(duì)x呈線性相關(guān),并且統(tǒng)計(jì)的五組數(shù)據(jù)得平均值分別為 , ,若用五組數(shù)據(jù)得到的線性回歸方程 =bx+a去估計(jì),使用8年的維修費(fèi)用比使用7年的維修費(fèi)用多1.1萬(wàn)元,
(1)求回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對(duì)n∈N*均有 =an+1成立,求c1+c2+c3+…+c2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=BC=BB1 , 求異面直線A1B與B1C所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中的6名同學(xué)打算參加學(xué)校組織的“演講團(tuán)”、“吉他協(xié)會(huì)”等五個(gè)社團(tuán),若每名同學(xué)必須參加且只能參加1個(gè)社團(tuán)且每個(gè)社團(tuán)至多兩人參加,則這6個(gè)人中沒有人參加“演講團(tuán)”的不同參加方法數(shù)為( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (α為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為 (t為參數(shù)).

(1)求曲線M的普通方程和曲線N的直角坐標(biāo)方程;

(2)若曲線N與曲線M有公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓短軸端點(diǎn)和兩個(gè)焦點(diǎn)的連線構(gòu)成正方形,且該正方形的內(nèi)切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,直線與拋物線交于兩點(diǎn),且,求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案