【題目】正四棱柱中,,為中點(diǎn),為中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角為,求的長.
【答案】(1)見證明;(2)2
【解析】
(1) 法一,取中點(diǎn)G,連接EG,GF,BF,證明EBFG為平行四邊形,得EG∥BF,即可證明; 法二,以為原點(diǎn),的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,求平面的一個(gè)法向量,證明即可(2)由求a即可
(1) 法一,取中點(diǎn)G,連接EG, GF,BF,則GF∥且GF=,同理EB∥且EB=,故EB∥FG,EB=FG,則EBFG為平行四邊形,則EG∥BF, 平面,所以平面
法二:以為原點(diǎn),的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系
設(shè),則,,,,,
故,.,
設(shè)平面的法向量.
∴,,得
取,得平面的一個(gè)法向量.,
又平面,所以平面;
(2) ,則.
即
解得,即的長為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo))、推理能力(指標(biāo))、建模能力(指標(biāo))的相關(guān)性,將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下數(shù)據(jù):
學(xué)生編號(hào) | ||||||||||
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;
(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生人數(shù)記為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級(jí)共有名學(xué)生,其中男生名,女生名,該校組織了一次口語模擬考試(滿分為分).為研究這次口語考試成績(jī)?yōu)楦叻质欠衽c性別有關(guān),現(xiàn)按性別采用分層抽樣抽取名學(xué)生的成績(jī),按從低到高分成,,,,,,七組,并繪制成如圖所示的頻率分布直方圖.已知的頻率等于的頻率,的頻率與的頻率之比為,成績(jī)高于分的為“高分”.
(1)估計(jì)該校高一年級(jí)學(xué)生在口語考試中,成績(jī)?yōu)椤案叻帧钡娜藬?shù);
(2)請(qǐng)你根據(jù)已知條件將下列列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“該校高一年級(jí)學(xué)生在本次口語考試中成績(jī)及格(分以上(含分)為及格)與性別有關(guān)”?
口語成績(jī)及格 | 口語成績(jī)不及格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面平面,,,,,,.
(1)求證:平面;
(2)求二面角的正弦值;
(3)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為圓O的直徑,且AB=4,點(diǎn)D為線段AB上一點(diǎn),且,點(diǎn)C為圓O上一點(diǎn),且.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)求證:CD⊥平面PAB;
(2)求直線PC與平面PAB所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇到行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”.下表是某十字路口監(jiān)控設(shè)備所抓拍的6個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為的統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“禮讓斑馬線”駕駛員人數(shù) | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)請(qǐng)根據(jù)表中所給前5個(gè)月的數(shù)據(jù),求不“禮讓斑馬線”的駕駛員人數(shù)與月份之間的回歸直線方程;
(Ⅱ)若該十字路口某月不“禮讓斑馬線”駕駛員人數(shù)的實(shí)際人數(shù)與預(yù)測(cè)人數(shù)之差小于5,則稱該十字路口“禮讓斑馬線”情況達(dá)到“理想狀態(tài)”.試根據(jù)(Ⅰ)中的回歸直線方程,判斷6月份該十字路口“禮讓斑馬線”情況是否達(dá)到“理想狀態(tài)”?
(Ⅲ)若從表中3、4月份分別選取4人和2人,再從所選取的6人中任意抽取2人進(jìn)行交規(guī)調(diào)查,求抽取的兩人恰好來自同一月份的概率.
參考公式: ,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com