已知橢圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)的直線與橢圓C相交于A、B兩點(diǎn),若,求直線的方程.
(1);(2)

試題分析:(1)因?yàn)闄E圓C:的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長為4的正三角形,所以可得到兩個(gè)關(guān)于的等式,從而求得相應(yīng)的值.
(2)因?yàn)檫^右焦點(diǎn)的直線與橢圓C相交于A、B兩點(diǎn),若,所以點(diǎn)A,B的縱坐標(biāo).所以通過假設(shè)直線方程聯(lián)立橢圓方程即可得到一個(gè)關(guān)于x(或y)的二次方程,在結(jié)合韋達(dá)定理即可求得k的值即可求得結(jié)論.
試題解析:(1)設(shè)橢圓C的方程為
由題意得,所以橢圓C的方程為.        4分
(2)設(shè)直線的方程為,代入橢圓方程得(3+4)y2+12-36=0.
設(shè),焦點(diǎn)則根據(jù),得(2-,-)=2(-2,),
由此得-=2,
解方程得:,所以
代入-=2,
=4,故,所以直線的方程為         12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓 的離心率為 ,點(diǎn) 為其下焦點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),過 的直線 (其中)與橢圓 相交于兩點(diǎn),且滿足:.

(1)試用  表示 ;
(2)求  的最大值;
(3)若 ,求  的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為、,橢圓上的點(diǎn)滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點(diǎn),且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線lyx,圓Ox2y2=5,橢圓E=1(a>b>0)的離心率e,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線的左焦點(diǎn)為F1,左、右頂點(diǎn)分別為A1、A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1,A1A2為直徑的兩個(gè)圓的位置關(guān)系為(   )
A.相交B.相切C.相離D.以上情況都有可能

查看答案和解析>>

同步練習(xí)冊(cè)答案