已知P是△ABC所在平面α外一點,且PA=PB=PC,則P在α上的射影一定是△ABC的( )
A.內(nèi)心
B.外心
C.重心
D.垂心
【答案】分析:點P在平面ABC上的射為O,利用已知條件,證明OA=OB=OC,推出結(jié)論.
解答:解:設(shè)點P作平面ABC的射影O,由題意:PA=PB=PC,因為PO⊥底面ABC,
所以△PAO≌△POB≌△POC
即:OA=OB=OC
所以O(shè)為三角形的外心.
故選B.
點評:本題考查棱錐的結(jié)構(gòu)特征,考查邏輯思維能力,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知P是△ABC所在平面內(nèi)一點,
PB
+
PC
+2
PA
=
0
,現(xiàn)將一粒黃豆隨機撒在△ABC內(nèi),則黃豆落在△APC內(nèi)的概率是( 。
A、
1
4
B、
1
3
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是△ABC所在平面內(nèi)的一點,若
CB
-
PB
PA
,其中λ∈R,則點P一定在( 。
A、AC邊所在的直線上
B、BC邊所在的直線上
C、AB邊所在的直線上
D、△ABC的內(nèi)部

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是△ABC所在平面外一點,點O是點P在平面ABC上的射影.若PA=PB=PC,則O是△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是△ABC所在平面α外一點,且PA,PB,PC與平面α所成的角相等,則點P在平面α上的射影一定是△ABC( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是△ABC所在平面內(nèi)任意一點,G是△ABC所在平面內(nèi)一定點,且
PA
+
PB
+
PC
=3
PG
,則G是△ABC的( 。

查看答案和解析>>

同步練習冊答案